miR-139-5p controls translation in myeloid leukemia through EIF4G2
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26165837
DOI
10.1038/onc.2015.247
PII: onc2015247
Knihovny.cz E-resources
- MeSH
- Cell Differentiation genetics MeSH
- Eukaryotic Initiation Factor-4G biosynthesis genetics MeSH
- Gene Knockdown Techniques MeSH
- Humans MeSH
- MicroRNAs biosynthesis genetics MeSH
- Leukemia, Myeloid genetics pathology MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation genetics MeSH
- Protein Biosynthesis * MeSH
- Gene Expression Regulation, Leukemic MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- EIF4G2 protein, human MeSH Browser
- Eukaryotic Initiation Factor-4G MeSH
- MicroRNAs MeSH
- MIRN139 microRNA, human MeSH Browser
MicroRNAs (miRNAs) are crucial components of homeostatic and developmental gene regulation. In turn, dysregulation of miRNA expression is a common feature of different types of cancer, which can be harnessed therapeutically. Here we identify miR-139-5p suppression across several cytogenetically defined acute myeloid leukemia (AML) subgroups. The promoter of mir-139 was transcriptionally silenced and could be reactivated by histone deacetylase inhibitors in a dose-dependent manner. Restoration of mir-139 expression in cell lines representing the major AML subgroups (t[8;21], inv[16], mixed lineage leukemia-rearranged and complex karyotype AML) caused cell cycle arrest and apoptosis in vitro and in xenograft mouse models in vivo. During normal hematopoiesis, mir-139 is exclusively expressed in terminally differentiated neutrophils and macrophages. Ectopic expression of mir-139 repressed proliferation of normal CD34(+)-hematopoietic stem and progenitor cells and perturbed myelomonocytic in vitro differentiation. Mechanistically, mir-139 exerts its effects by repressing the translation initiation factor EIF4G2, thereby reducing overall protein synthesis while specifically inducing the translation of cell cycle inhibitor p27(Kip1). Knockdown of EIF4G2 recapitulated the effects of mir-139, whereas restoring EIF4G2 expression rescued the mir-139 phenotype. Moreover, elevated miR-139-5p expression is associated with a favorable outcome in a cohort of 165 pediatric patients with AML. Thus, mir-139 acts as a global tumor suppressor-miR in AML by controlling protein translation. As AML cells are dependent on high protein synthesis rates controlling the expression of mir-139 constitutes a novel path for the treatment of AML.
Clinic for Pediatrics 3 University Hospital Essen Essen Germany
Department of Biochemistry Erasmus MC Sophia Children's Hospital Rotterdam The Netherlands
Department of Hematology Hopitaux universitaires Saint Louis St Louis Hospital Paris France
Department of Pediatric Hematology and Oncology Hannover Medical School Hannover Germany
Dutch Childhood Oncology Group Hague The Netherlands
Institute for Toxicology Hannover Medical School Hannover Germany
See more in PubMed
Cancer Cell. 2010 Jan 19;17(1):28-40 PubMed
CNS Neurosci Ther. 2013 Jul;19(7):477-83 PubMed
Med Oncol. 2014 Jan;31(1):789 PubMed
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11511-6 PubMed
Curr Opin Hematol. 2013 Mar;20(2):79-85 PubMed
Mol Cell Biol. 2004 Jun;24(11):4920-8 PubMed
Mol Ther. 2008 Apr;16(4):698-706 PubMed
Blood. 1991 Jul 15;78(2):451-7 PubMed
J Neurosci. 2013 Apr 24;33(17):7165-74 PubMed
Nat Rev Mol Cell Biol. 2005 Apr;6(4):318-27 PubMed
Nature. 1990 Jun 7;345(6275):544-7 PubMed
Biochem Biophys Res Commun. 2007 Dec 21;364(3):509-14 PubMed
Gastroenterology. 2011 Dec;141(6):2076-2087.e6 PubMed
Blood. 2015 Jan 1;125(1):90-101 PubMed
Blood. 2012 Mar 8;119(10):2314-24 PubMed
CA Cancer J Clin. 2014 Sep-Oct;64(5):311-36 PubMed
J Neurosci. 2012 Apr 18;32(16):5620-30 PubMed
Blood. 2014 Jul 3;124(1):13-23 PubMed
Blood. 2009 Jul 30;114(5):937-51 PubMed
Oncogene. 2004 Apr 19;23(18):3180-8 PubMed
J Biol Chem. 2003 Dec 5;278(49):48570-9 PubMed
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5400-5 PubMed
Oncogene. 2012 Sep 13;31(37):4085-94 PubMed
RNA. 2013 Dec;19(12):1767-80 PubMed
Mol Cell Biol. 1998 Jan;18(1):334-42 PubMed
RNA. 2007 Mar;13(3):374-84 PubMed
Cell Cycle. 2009 Dec;8(23):3893-9 PubMed
Oncogene. 2012 Jan 26;31(4):507-17 PubMed
Gene Expr. 2008;14(3):173-82 PubMed
Cell Rep. 2013 Oct 31;5(2):471-81 PubMed
FEBS J. 2014 Aug;281(16):3609-24 PubMed
Gastroenterology. 2011 Jan;140(1):322-31 PubMed
Cell. 2004 Jan 23;116(2):281-97 PubMed
Mol Cell. 2008 May 23;30(4):447-59 PubMed
Mol Cancer. 2010 Apr 16;9:78 PubMed
Leukemia. 2014 May;28(5):1022-32 PubMed
Cancer Cell. 2004 Jun;5(6):553-63 PubMed
Cell Biochem Funct. 2013 Jun;31(4):319-24 PubMed
Nature. 2014 Sep 4;513(7516):105-9 PubMed
Mol Cancer. 2014 May 26;13:124 PubMed
PLoS Genet. 2014 Jan 30;10(1):e1004105 PubMed
Oncol Rep. 2014 Jan;31(1):397-404 PubMed
EMBO J. 1998 Dec 15;17(24):7480-9 PubMed
EMBO J. 2006 Sep 6;25(17):4008-19 PubMed
Leukemia. 2006 Jun;20(6):911-28 PubMed
Leukemia. 2014 Mar;28(3):577-88 PubMed
Cell. 2011 Feb 18;144(4):513-25 PubMed
Tumour Biol. 2013 Oct;34(5):2617-24 PubMed
Am J Hematol. 2014 Dec;89(12):1121-31 PubMed
Nucleic Acids Res. 2006;34(16):e107 PubMed
Oncogene. 2012 Jul 5;31(27):3287-97 PubMed
Structure. 2013 Apr 2;21(4):517-27 PubMed
Cancer Res. 1997 Nov 15;57(22):5041-4 PubMed
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5993-8 PubMed
Leukemia. 2013 Oct;27(10):2047-55 PubMed
Blood. 2012 Oct 18;120(16):3187-205 PubMed
Chembiochem. 2003 Nov 7;4(11):1147-9 PubMed
Cold Spring Harb Perspect Biol. 2012 Oct 01;4(10):null PubMed
Mol Cell Biochem. 2013 Nov;383(1-2):59-65 PubMed