Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26180579
PubMed Central
PMC4477188
DOI
10.1155/2015/154164
Knihovny.cz E-zdroje
- MeSH
- antigeny CD95 metabolismus MeSH
- apoptóza účinky léků MeSH
- brusnice s jedlými plody chemie metabolismus MeSH
- buněčné linie MeSH
- chemorezistence MeSH
- DNA metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- fosforylace účinky léků MeSH
- fragmentace DNA účinky léků MeSH
- kaspasa 3 metabolismus MeSH
- kaspasa 8 metabolismus MeSH
- kaspasa 9 metabolismus MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- nádory tračníku metabolismus patologie MeSH
- ovoce chemie metabolismus MeSH
- proantokyanidiny chemie izolace a purifikace toxicita MeSH
- protein TRAIL toxicita MeSH
- rostlinné extrakty chemie MeSH
- TRAIL receptory metabolismus MeSH
- Vaccinium vitis-idaea chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD95 MeSH
- DNA MeSH
- FAS protein, human MeSH Prohlížeč
- fosfatidylseriny MeSH
- kaspasa 3 MeSH
- kaspasa 8 MeSH
- kaspasa 9 MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- proantokyanidiny MeSH
- protein TRAIL MeSH
- rostlinné extrakty MeSH
- TRAIL receptory MeSH
SCOPE: The aim of this work is to identify which proapoptotic pathway is induced in human colon cancer cell lines, in contact with proanthocyanidins extracted from various berries. METHODS AND RESULTS: Proanthocyanidins (Pcys) extracted from 11 berry species are monitored for proapoptotic activities on two related human colon cancer cell lines: SW480-TRAIL-sensitive and SW620-TRAIL-resistant. Apoptosis induction is monitored by cell surface phosphatidylserine (PS) detection. Lowbush blueberry extract triggers the strongest activity. When tested on the human monocytic cell line THP-1, blueberry Pcys are less effective for PS externalisation and DNA fragmentation is absent, highlighting a specificity of apoptosis induction in gut cells. In Pcys-treated gut cell lines, caspase 8 (apoptosis extrinsic pathway) but not caspase 9 (apoptosis intrinsic pathway) is activated after 3 hours through P38 phosphorylation (90 min), emphasizing the potency of lowbush blueberry Pcys to eradicate gut TRAIL-resistant cancer cells. CONCLUSION: We highlight here that berries Pcys, especially lowbush blueberry Pcys, are of putative interest for nutritional chemoprevention of colorectal cancer in view of their apoptosis induction in a human colorectal cancer cell lines.
Zobrazit více v PubMed
Parkin D. M., Bray F., Ferlay J., Pisani P. Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians. 2005;55(2):74–108. doi: 10.3322/canjclin.55.2.74. PubMed DOI
Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proceedings of the Nutrition Society. 2008;67(3):253–256. doi: 10.1017/S002966510800712X. PubMed DOI
Johnson I. T. New approaches to the role of diet in the prevention of cancers of the alimentary tract. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2004;551(1-2):9–28. doi: 10.1016/j.mrfmmm.2004.02.017. PubMed DOI
Norat T., Bingham S., Ferrari P., et al. Meat, fish, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. Journal of the National Cancer Institute. 2005;97(12):906–916. doi: 10.1093/jnci/dji164. PubMed DOI PMC
Van Duijnhoven F. J. B., Bueno-De-Mesquita H. B., Ferrari P., et al. Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. The American Journal of Clinical Nutrition. 2009;89(5):1441–1452. doi: 10.3945/ajcn.2008.27120. PubMed DOI
Hawk E. T., Umar A., Viner J. L. Colorectal cancer chemoprevention—an overview of the science. Gastroenterology. 2004;126(5):1423–1447. doi: 10.1053/j.gastro.2004.03.002. PubMed DOI
Jemal A., Tiwari R. C., Murray T., et al. Cancer statistics, 2004. CA: A Cancer Journal for Clinicians. 2004;54(1):8–29. doi: 10.3322/canjclin.54.1.8. PubMed DOI
Dove-Edwin I., Thomas H. J. Review article: the prevention of colorectal cancer. Alimentary Pharmacology & Therapeutics. 2001;15(3):323–336. doi: 10.1046/j.1365-2036.2001.00934.x. PubMed DOI
Sporn M. B., Dunlop N. M., Newton D. L., Smith J. M. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids) Federation Proceedings. 1976;35(6):1332–1338. PubMed
Mehta R. G., Murillo G., Naithani R., Peng X. Cancer chemoprevention by natural products: how far have we come? Pharmaceutical Research. 2010;27(6):950–961. doi: 10.1007/s11095-010-0085-y. PubMed DOI
Gustin D. M., Brenner D. E. Chemoprevention of colon cancer: Current status and future prospects. Cancer and Metastasis Reviews. 2002;21(3-4):323–348. doi: 10.1023/A:1021271229476. PubMed DOI
Surh Y.-J. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer. 2003;3(10):768–780. doi: 10.1038/nrc1189. PubMed DOI
Manson M. M. Cancer prevention—the potential for diet to modulate molecular signalling. Trends in Molecular Medicine. 2003;9(1):11–18. doi: 10.1016/S1471-4914(02)00002-3. PubMed DOI
Aggarwal B. B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochemical Pharmacology. 2006;71(10):1397–1421. doi: 10.1016/j.bcp.2006.02.009. PubMed DOI
Kerbel R. S., Kamen B. A. The anti-angiogenic basis of metronomic chemotherapy. Nature Reviews Cancer. 2004;4(6):423–436. doi: 10.1038/nrc1369. PubMed DOI
Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology. 2007;35(4):495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC
Mondal S., Bandyopadhyay S., Ghosh M. K., Mukhopadhyay S., Roy S., Mandal C. Natural products: promising resources for cancer drug discovery. Anti-Cancer Agents in Medicinal Chemistry. 2012;12(1):49–75. doi: 10.2174/187152012798764697. PubMed DOI
Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. Journal of Nutritional Biochemistry. 2007;18(7):427–442. doi: 10.1016/j.jnutbio.2006.11.004. PubMed DOI
Khan N., Adhami V. M., Mukhtar H. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocrine-Related Cancer. 2010;17(1):R39–R52. doi: 10.1677/ERC-09-0262. PubMed DOI PMC
Pan M.-H., Ghai G., Ho C.-T. Food bioactives, apoptosis, and cancer. Molecular Nutrition and Food Research. 2008;52(1):43–52. doi: 10.1002/mnfr.200700380. PubMed DOI
Yoshioka Y., Akiyama H., Nakano M., et al. Orally administered apple procyanidins protect against experimental inflammatory bowel disease in mice. International Immunopharmacology. 2008;8(13-14):1802–1807. doi: 10.1016/j.intimp.2008.08.021. PubMed DOI
Gu L., Kelm M. A., Hammerstone J. F., et al. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. Journal of Agricultural and Food Chemistry. 2003;51(25):7513–7521. doi: 10.1021/jf034815d. PubMed DOI
Shoji T., Mutsuga M., Nakamura T., Kanda T., Akiyama H., Goda Y. Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance. Journal of Agricultural and Food Chemistry. 2003;51(13):3806–3813. doi: 10.1021/jf0300184. PubMed DOI
Gu L., Kelm M., Hammerstone J. F., et al. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. Journal of Agricultural and Food Chemistry. 2002;50(17):4852–4860. doi: 10.1021/jf020214v. PubMed DOI
Kelm M. A., Johnson J. C., Robbins R. J., Hammerstone J. F., Schmitz H. H. High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. Journal of Agricultural and Food Chemistry. 2006;54(5):1571–1576. doi: 10.1021/jf0525941. PubMed DOI
González-Manzano S., Santos-Buelga C., Pérez-Alonso J. J., Rivas-Gonzalo J. C., Escribano-Bailón M. T. Characterization of the mean degree of polymerization of proanthocyanidins in red wines using Liquid Chromatography-Mass Spectrometry (LC-MS) Journal of Agricultural and Food Chemistry. 2006;54(12):4326–4332. doi: 10.1021/jf060467e. PubMed DOI
Aron P. M., Kennedy J. A. Flavan-3-ols: nature, occurrence and biological activity. Molecular Nutrition & Food Research. 2008;52(1):79–104. doi: 10.1002/mnfr.200700137. PubMed DOI
Prior R. L., Gu L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry. 2005;66(18):2264–2280. doi: 10.1016/j.phytochem.2005.03.025. PubMed DOI
Hellstrom J. K., Torronen A. R., Mattila P. H. Proanthocyanidins in common food products of plant origin. Journal of Agricultural and Food Chemistry. 2009;57(17):7899–7906. doi: 10.1021/jf901434d. PubMed DOI
Gu L., Kelm M. A., Hammerstone J. F., et al. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. Journal of Nutrition. 2004;134(3):613–617. PubMed
de La Iglesia R., Milagro F. I., Campión J., Boqué N., Martínez J. A. Healthy properties of proanthocyanidins. BioFactors. 2010;36(3):159–168. doi: 10.1002/biof.79. PubMed DOI
Koga T., Moro K., Nakamori K., et al. Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds. Journal of Agricultural and Food Chemistry. 1999;47(5):1892–1897. doi: 10.1021/jf9810517. PubMed DOI
Balzer J., Rassaf T., Heiss C., et al. Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. Journal of the American College of Cardiology. 2008;51(22):2141–2149. doi: 10.1016/j.jacc.2008.01.059. PubMed DOI
Nandakumar V., Singh T., Katiyar S. K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Letters. 2008;269(2):378–387. doi: 10.1016/j.canlet.2008.03.049. PubMed DOI PMC
Gossé F., Guyot S., Roussi S., et al. Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis. 2005;26(7):1291–1295. doi: 10.1093/carcin/bgi074. PubMed DOI
Maldonado-Celis M. E., Roussi S., Foltzer-Jourdainne C., et al. Modulation by polyamines of apoptotic pathways triggered by procyanidins in human metastatic SW620 cells. Cellular and Molecular Life Sciences. 2008;65(9):1425–1434. doi: 10.1007/s00018-008-8023-4. PubMed DOI PMC
Maldonado-Celis M. E., Bousserouel S., Gossé F., Lobstein A., Raul F. Apple procyanidins activate apoptotic signaling pathway in human colon adenocarcinoma cells by a lipid-raft independent mechanism. Biochemical and Biophysical Research Communications. 2009;388(2):372–376. doi: 10.1016/j.bbrc.2009.08.016. PubMed DOI
Katsube N., Iwashita K., Tsushida T., Yamaki K., Kobori M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. Journal of Agricultural and Food Chemistry. 2003;51(1):68–75. doi: 10.1021/jf025781x. PubMed DOI
Zhao C., Giusti M. M., Malik M., Moyer M. P., Magnuson B. A. Effects of commercial anthocyanin-rich on colonic cancer and nontumorigenic colonic cell growth. Journal of Agricultural and Food Chemistry. 2004;52(20):6122–6128. doi: 10.1021/jf049517a. PubMed DOI
Lala G., Malik M., Zhao C., et al. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutrition and Cancer. 2006;54(1):84–93. doi: 10.1207/s15327914nc5401_10. PubMed DOI
Leibovitz A., Stinson J. C., McCombs W. B., III, et al Classification of human colorectal adenocarcinoma cell lines. Cancer Research. 1976;36(12):4562–4569. PubMed
Hewitt R. E., McMarlin A., Kleiner D., et al. Validation of a model of colon cancer progression. The Journal of Pathology. 2000;192(4):446–454. PubMed
Prior R. L., Fan E., Ji H., et al. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. Journal of the Science of Food and Agriculture. 2010;90(9):1473–1478. doi: 10.1002/jsfa.3966. PubMed DOI
Ong S. Y., Wain A., Groombridge L., Grimes E. Forensic identification of urine using the DMAC test: a method validation study. Science and Justice. 2012;52(2):90–95. doi: 10.1016/j.scijus.2011.07.007. PubMed DOI
McMurrough I., McDowell J. Chromatographic separation and automated analysis of flavanols. Analytical Biochemistry. 1978;91(1):92–100. doi: 10.1016/0003-2697(78)90819-9. PubMed DOI
Nagel C. W., Glories Y. Use of a modified dimethylaminocinnamaldehyde reagent for analysis of flavanols. The American Journal of Enology and Viticulture. 1991;42(4):364–366.
Prior R. L., Wu X., Gu L., et al. Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet. Molecular Nutrition and Food Research. 2009;53(11):1406–1418. doi: 10.1002/mnfr.200900026. PubMed DOI
Payne M. J., Hurst W. J., Stuart D. A., et al. Determination of total procyanidins in selected chocolate and confectionery products using DMAC. Journal of AOAC International. 2010;93(1):89–96. PubMed
Kannaiyan R., Manu K. A., Chen L., et al. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis. 2011;16(10):1028–1041. doi: 10.1007/s10495-011-0629-6. PubMed DOI
Sung B., Park B., Yadav V. R., Aggarwal B. B. Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. Journal of Biological Chemistry. 2010;285(15):11498–11507. doi: 10.1074/jbc.M109.090209. PubMed DOI PMC
Chacón M. R., Ceperuelo-Mallafré V., Maymó-Masip E., et al. Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro . Cytokine. 2009;47(2):137–142. doi: 10.1016/j.cyto.2009.06.001. PubMed DOI
Bagchi D., Bagchi M., Stohs S. J., Ray S. D., Sen C. K., Preuss H. G. Cellular protection with proanthocyanidins derived from grape seeds. Annals of the New York Academy of Sciences. 2002;957:260–270. doi: 10.1111/j.1749-6632.2002.tb02922.x. PubMed DOI
Tatsuno T., Jinno M., Arima Y., et al. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biological and Pharmaceutical Bulletin. 2012;35(6):909–916. doi: 10.1248/bpb.35.909. PubMed DOI
Maldonado-Celis M.-E., Bousserouel S., Gossé F., Minker C., Lobstein A., Raul F. Differential induction of apoptosis by apple procyanidins in TRAIL-sensitive human colon tumor cells and derived TRAIL-resistant metastatic cells. Journal of Cancer Molecules. 2009;5(1):21–30.
Löwenberg M., Peppelenbosch M. P., Hommes D. W. Therapeutic modulation of signal transduction pathways. Inflammatory Bowel Diseases. 2004;10(1):S52–S57. doi: 10.1097/00054725-200402001-00011. PubMed DOI
Yang A., Li H., Zhang W. Y., Chung Y. T., Liao J., Yang G.-Y. Chemoprevention of chronic inflammatory bowel disease-induced carcinogenesis in Rodent Models by Berries. In: Seeram N. P., Stoner G. D., editors. Berries and Cancer Prevention. New York, NY, USA: Springer; 2011. pp. 227–243. DOI
Araújo J. R., Gonçalves P., Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutrition Research. 2011;31(2):77–87. doi: 10.1016/j.nutres.2011.01.006. PubMed DOI
Arranz S., Saura-Calixto F., Shaha S., Kroon P. A. High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. Journal of Agricultural and Food Chemistry. 2009;57(16):7298–7303. doi: 10.1021/jf9016652. PubMed DOI
Pérez-Jiménez J., Arranz S., Saura-Calixto F. Proanthocyanidin content in foods is largely underestimated in the literature data: an approach to quantification of the missing proanthocyanidins. Food Research International. 2009;42(10):1381–1388. doi: 10.1016/j.foodres.2009.07.002. DOI
Lizarraga D., Lozano C., Briedé J. J., et al. The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts. FEBS Journal. 2007;274(18):4802–4811. doi: 10.1111/j.1742-4658.2007.06010.x. PubMed DOI
Schmidt B. M., Erdman J. W., Jr., Lila M. A. Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Letters. 2006;231(2):240–246. doi: 10.1016/j.canlet.2005.02.003. PubMed DOI
Maestre R., Micol V., Funes L., Medina I. Incorporation and interaction of grape seed extract in membranes and relation with efficacy in muscle foods. Journal of Agricultural and Food Chemistry. 2010;58(14):8365–8374. doi: 10.1021/jf100327w. PubMed DOI
Dong Z., Surh Y. J. Dietary Modulation of Cell Signaling Pathways. Taylor & Francis; 2008.
Verstraeten S. V., Hammerstone J. F., Keen C. L., Fraga C. G., Oteiza P. I. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa. Journal of Agricultural and Food Chemistry. 2005;53(12):5041–5048. doi: 10.1021/jf058018m. PubMed DOI
Siddiqui I. A., Malik A., Adhami V. M., et al. Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene. 2008;27(14):2055–2063. doi: 10.1038/sj.onc.1210840. PubMed DOI
Shankar S., Ganapathy S., Chen Q., Srivastava R. K. Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Molecular Cancer. 2008;7, article 16 doi: 10.1186/1476-4598-7-16. PubMed DOI PMC
Liang C.-H., Shiu L.-Y., Chang L.-C., Sheu H.-M., Tsai E.-M., Kuo K.-W. Solamargine enhances HER2 expression and increases the susceptibility of human lung cancer H661 and H69 cells to trastuzumab and epirubicin. Chemical Research in Toxicology. 2008;21(2):393–399. doi: 10.1021/tx700310x. PubMed DOI
Shammas M. A., Neri P., Koley H., et al. Specific killing of multiple myeloma cells by (-)-epigallocatechin-3- gallate extracted from green tea: biologic activity and therapeutic implications. Blood. 2006;108(8):2804–2810. doi: 10.1182/blood-2006-05-022814. PubMed DOI PMC
Saleem M., Kweon M. H., Yun J. M., et al. A novel dietary triterpene lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model. Cancer Research. 2005;65(23):11203–11213. doi: 10.1158/0008-5472.CAN-05-1965. PubMed DOI
Vacek J., Zatloukalová M., Desmier T., et al. Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin. Chemico-Biological Interactions. 2013;205(3):173–180. doi: 10.1016/j.cbi.2013.07.006. PubMed DOI
Podloucká P., Berka K., Fabre G., et al. Lipid bilayer membrane affinity rationalizes inhibition of lipid peroxidation by a natural lignan antioxidant. The Journal of Physical Chemistry B. 2013;117(17):5043–5049. doi: 10.1021/jp3127829. PubMed DOI
Rasmussen S. E., Frederiksen H., Krogholm K. S., Poulsen L. Dietary proanthocyanidins: occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Molecular Nutrition and Food Research. 2005;49(2):159–174. doi: 10.1002/mnfr.200400082. PubMed DOI
Serrano J., Puupponen-Pimiä R., Dauer A., Aura A.-M., Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition and Food Research. 2009;53(supplement 2):S310–S329. doi: 10.1002/mnfr.200900039. PubMed DOI
Santos-Buelga C., Scalbert A. Proanthocyanidins and tannin-like compounds—nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture. 2000;80(7):1094–1117.
Prasain J. K., Peng N., Dai Y., et al. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine. 2009;16(2-3):233–243. doi: 10.1016/j.phymed.2008.08.006. PubMed DOI PMC
Tsang C., Auger C., Mullen W., et al. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. British Journal of Nutrition. 2005;94(2):170–181. doi: 10.1079/BJN20051480. PubMed DOI
Holt R. R., Lazarus S. A., Cameron Sullards M., et al. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. American Journal of Clinical Nutrition. 2002;76(4):798–804. PubMed
Sano A., Yamakoshi J., Tokutake S., Tobe K., Kubota Y., Kikuchi M. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Bioscience, Biotechnology and Biochemistry. 2003;67(5):1140–1143. doi: 10.1271/bbb.67.1140. PubMed DOI
Brown E. M., McDougall G. J., Stewart D., et al. Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation. PLoS ONE. 2012;7(11) doi: 10.1371/journal.pone.0049740.e49740 PubMed DOI PMC
Mackenzie G. G., Zago M. P., Erlejman A. G., Aimo L., Keen C. L., Oteiza P. I. α-Lipoic acid and N-acetyl cysteine prevent zinc deficiency-induced activation of NF-κB and AP-1 transcription factors in human neuroblastoma IMR-32 cells. Free Radical Research. 2006;40(1):75–84. doi: 10.1080/10715760500312305. PubMed DOI
Ottaviani J. I., Keen C. L., Fraga C. G. Chocolate and health: on the vascular effects of flavanols in cocoa. Agro Food Industry Hi-Tech. 2009;20(6):6–9.
Verstraeten S. V., Lanoue L., Keen C. L., Oteiza P. I. Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties. Archives of Biochemistry and Biophysics. 2005;438(1):103–110. doi: 10.1016/j.abb.2005.04.006. PubMed DOI
Deprez S., Brezillon C., Rabot S., et al. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. Journal of Nutrition. 2000;130(11):2733–2738. PubMed
Monagas M., Urpi-Sarda M., Sánchez-Patán F., et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food and Function. 2010;1(3):233–253. doi: 10.1039/c0fo00132e. PubMed DOI