Cold-Setting Inkjet Printed Titania Patterns Reinforced by Organosilicate Binder
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26378515
PubMed Central
PMC6332201
DOI
10.3390/molecules200916582
PII: molecules200916582
Knihovny.cz E-zdroje
- Klíčová slova
- UV-curing, direct patterning, material printing, silica binder, titania,
- MeSH
- nanočástice chemie MeSH
- oxid křemičitý chemie MeSH
- titan chemie MeSH
- ultrafialové záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid křemičitý MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
A hybrid organo-silica sol was used as a binder for reinforcing of commercial titanium dioxide nanoparticles (Evonic P25) deposited on glass substrates. The organo-silica binder was prepared by the sol-gel process and mixtures of titania nanoparticles with the binder in various ratios were deposited by materials printing technique. Patterns with both positive and negative features down to 100 µm size and variable thickness were reliably printed by Fujifilm Dimatix inkjet printer. All prepared films well adhered onto substrates, however further post-printing treatment proved to be necessary in order to improve their reactivity. The influence of UV radiation as well as of thermal sintering on the final electrochemical and photocatalytic properties was investigated. A mixture containing 63 wt % of titania delivered a balanced compromise of mechanical stability, generated photocurrent density and photocatalytic activity. Although the heat treated samples yielded generally higher photocurrent, higher photocatalytic activity towards model aqueous pollutant was observed in the case of UV cured samples because of their superhydrophilic properties. While heat sintering remains the superior processing method for inorganic substrates, UV-curing provides a sound treatment option for heat sensitive ones.
Zobrazit více v PubMed
Malato S., Blanco J., Caceres J., Fernandez-Alba A.R., Aguera A., Rodriguez A. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal. Today. 2002;76:209–220. doi: 10.1016/S0920-5861(02)00220-1. DOI
Hinkova A., Henke S., Bubnik Z., Pour V., Salova A., Slukova M., Sarka E. Degradation of food industrial pollutants by photocatalysis with immobilized titanium dioxide. Innov. Food Sci. Emerg. Technol. 2015;27:129–135. doi: 10.1016/j.ifset.2014.12.006. DOI
Fujishima A., Zhang X., Tryk D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008;63:515–582. doi: 10.1016/j.surfrep.2008.10.001. DOI
Levchuk I., Rueda-Márquez J.J., Suihkonen S., Manzano M.A., Sillanpää M. Application of UVA-LED based photocatalysis for plywood mill wastewater treatment. Sep. Purif. Technol. 2015;143:1–5. doi: 10.1016/j.seppur.2015.01.007. DOI
Ismail A.A., Bahnemann D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells. 2014;128:85–101. doi: 10.1016/j.solmat.2014.04.037. DOI
Li X., Liu P., Mao Y., Xing M., Zhang J. Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl. Catal. B. 2015;164:352–359. doi: 10.1016/j.apcatb.2014.09.053. DOI
Mayer B.K., Daugherty E., Abbaszadegan M. Disinfection byproduct formation resulting from settled, filtered, and finished water treated by titanium dioxide photocatalysis. Chemosphere. 2014;117:72–78. doi: 10.1016/j.chemosphere.2014.05.073. PubMed DOI
Lopez Fernandez R., McDonald J.A., Khan S.J., Le-Clech P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR) Sep. Purif. Technol. 2014;127:131–139. doi: 10.1016/j.seppur.2014.02.031. DOI
Wang B., de Godoi F.C., Sun Z., Zeng Q., Zheng S., Frost R.L. Synthesis, characterization and activity of an immobilized photocatalyst: Natural porous diatomite supported titania nanoparticles. J. Colloid Interface Sci. 2015;438:204–211. doi: 10.1016/j.jcis.2014.09.064. PubMed DOI
Dunnill C.W., Kafizas A., Parkin I.P. Cvd production of doped titanium dioxide thin films. Chem. Vap. Depos. 2012;18:89–101. doi: 10.1002/cvde.201200048. DOI
Kelly P.J., West G.T., Ratova M., Fisher L., Ostovarpour S., Verran J. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings. Molecules. 2014;19:16327–16348. doi: 10.3390/molecules191016327. PubMed DOI PMC
Tay B.K., Zhao Z.W., Chua D.H.C. Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng. R-Rep. 2006;52:1–48. doi: 10.1016/j.mser.2006.04.003. DOI
Macwan D.P., Dave P.N., Chaturvedi S. A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater. Sci. 2011;46:3669–3686. doi: 10.1007/s10853-011-5378-y. DOI
Akpan U.G., Hameed B.H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen. 2010;375:1–11. doi: 10.1016/j.apcata.2009.12.023. DOI
Putz J., Aegerter M.A. Versatile wet deposition techniques for functional oxide coatings on glass. Glass Sci. Technol. 2004;77:229–238.
Sobczyk-Guzenda A., Pietrzyk B., Szymanowski H., Gazicki-Lipman M., Jakubowski W. Photocatalytic activity of thin TiO2 films deposited using sol–gel and plasma enhanced chemical vapor deposition methods. Ceram. Int. 2013;39:2787–2794. doi: 10.1016/j.ceramint.2012.09.046. DOI
Krebs F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells. 2009;93:394–412. doi: 10.1016/j.solmat.2008.10.004. DOI
Riegel S., Mutter F., Lauermann T., Terheiden B., Hahn G. Review on screen printed metallization on p-type silicon. Energy Procedia. 2012;21:14–23. doi: 10.1016/j.egypro.2012.05.003. DOI
Choi H.W., Zhou T., Singh M., Jabbour G.E. Recent developments and directions in printed nanomaterials. Nanoscale. 2015;7:3338–3355. doi: 10.1039/C4NR03915G. PubMed DOI
Martin G.D., Hoath S.D., Hutchings I.M. Inkjet Printing—The Physics of Manipulating Liquid Jets and Drops. J. Phys.: Conf. Ser. 2008;105 doi: 10.1088/1742-6596/105/1/012001. DOI
Ballarin B., Fraleoni-Morgera A., Frascaro D., Marazzita S., Piana C., Setti L. Thermal inkjet microdeposition of pedot: PSS on ITO-coated glass and characterization of the obtained film. Synth. Met. 2004;146:201–205. doi: 10.1016/j.synthmet.2004.07.006. DOI
Morrin A., Ngamna O., O’Malley E., Kent N., Moulton S.E., Wallace G.G., Smyth M.R., Killard A.J. The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochim. Acta. 2008;53:5092–5099. doi: 10.1016/j.electacta.2008.02.010. DOI
Yoshioka Y., Jabbour G.E. Desktop inkjet printer as a tool to print conducting polymers. Synth. Metals. 2006;156:779–783. doi: 10.1016/j.synthmet.2006.03.013. DOI
Taylor A.D., Kim E.Y., Humes V.P., Kizuka J., Thompson L.T. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J. Power Sour. 2007;171:101–106. doi: 10.1016/j.jpowsour.2007.01.024. DOI
Radulescu D., Dhar S., Young C.M., Taylor D.W., Trost H.J., Hayes D.J., Evans G.R. Tissue Engineering Scaffolds for Nerve Regeneration Manufactured by Ink-Jet Technology; Proceedings of the Symposium on Next Generation Biomaterals; Pittsburgh, PA, USA. 25–28 September 2005; pp. 534–539.
Zhang C.H., Wen X.J., Vyavahare N.R., Boland T. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials. 2008;29:3781–3791. doi: 10.1016/j.biomaterials.2008.06.009. PubMed DOI
Xu T., Gregory C.A., Molnar P., Cui X., Jalota S., Bhaduri S.B., Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–3588. doi: 10.1016/j.biomaterials.2006.01.048. PubMed DOI
Xu T., Jin J., Gregory C., Hickman J.J., Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–99. doi: 10.1016/j.biomaterials.2004.04.011. PubMed DOI
Liu Y., Cui T.H., Varahramyan K. All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 2003;47:1543–1548. doi: 10.1016/S0038-1101(03)00082-0. DOI
Kawase T., Shimoda T., Newsome C., Sirringhaus H., Friend R.H. Inkjet printing of polymer thin film transistors; Proceedings of the 5th International Conference on Nano-Molecular Electronics (ICNME2002); Kobe, Japan. 10–12 December 2002; pp. 279–287.
Chen B., Cui T.H., Liu Y., Varahramyan K. All-polymer rc filter circuits fabricated with inkjet printing technology. Solid-State Electron. 2003;47:841–847. doi: 10.1016/S0038-1101(02)00443-4. DOI
Bharathan J., Yang Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 1998;72:2660–2662. doi: 10.1063/1.121090. DOI
Dzik P., Veselý M., Králová M., Neumann-Spallart M. Ink-jet printed planar electrochemical cells. Appl. Catal. B. 2015;178:186–191. doi: 10.1016/j.apcatb.2014.09.030. DOI
Byrne H.E., Mazyck D.W. Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. J. Hazard. Mater. 2009;170:915–919. doi: 10.1016/j.jhazmat.2009.05.055. PubMed DOI
Akly C., Chadik P.A., Mazyck D.W. Photocatalysis of gas-phase toluene using silica-titania composites: Performance of a novel catalyst immobilization technique suitable for large-scale applications. Appl. Catal. B. 2010;99:329–335. doi: 10.1016/j.apcatb.2010.07.002. DOI
Kibombo H.S., Koodali R.T. Heterogeneous photocatalytic remediation of phenol by platinized titania-silica mixed oxides under solar-simulated conditions. J. Phys. Chem. C. 2011;115:25568–25579. doi: 10.1021/jp209620j. DOI
Khalil K.M.S., Elsamahy A.A., Elanany M.S. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(iv) tetraisopropoxide in sols of spherical silica particles. J. Colloid Interface Sci. 2002;249:359–365. doi: 10.1006/jcis.2002.8268. PubMed DOI
Li Z.J., Hou B., Xu Y., Wu D., Sun Y.H., Hu W., Deng F. Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles. J. Solid State Chem. 2005;178:1395–1405. doi: 10.1016/j.jssc.2004.12.034. DOI
Attia S.M., Wang J., Wu G.M., Shen J., Ma J.H. Review on sol-gel derived coatings: Process, techniques and optical applications. J. Mater. Sci. Technol. 2002;18:211–218.
Bernacka-Wojcik I., Senadeera R., Wojcik P.J., Silva L.B., Doria G., Baptista P., Aguas H., Fortunato E., Martins R. Inkjet printed and “doctor blade” TiO2 photodetectors for DNA biosensors. Biosens. Bioelectron. 2010;25:1229–1234. doi: 10.1016/j.bios.2009.09.027. PubMed DOI
Yang M., Li L.H., Zhang S.Q., Li G.Y., Zhao H.J. Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode. Sens. Actuat. B. 2010;147:622–628. doi: 10.1016/j.snb.2010.03.048. DOI
Arin M., Lommens P., Hopkins S.C., Pollefeyt G., van der Eycken J., Ricart S., Granados X., Glowacki B.A., van Driessche I. Deposition of photocatalytically active tio2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis. Nanotechnology. 2012;23:165603–165613. doi: 10.1088/0957-4484/23/16/165603. PubMed DOI
Loffredo F., Grimaldi I.A., Del Mauro A.D.G., Villani F., Bizzarro V., Nenna G., D’Amato R., Minarini C. Polyethylenimine/n-doped titanium dioxide nanoparticle based inks for ink-jet printing applications. J. Appl. Polym. Sci. 2011;122:3630–3636. doi: 10.1002/app.34775. DOI
Cherrington R., Hughes D.J., Senthilarasu S., Goodship V. Inkjet-printed TiO2 nanoparticles from aqueous solutions for dye-sensitized solar cells (DSSCs) Energy Technol. 2015;3:866–870. doi: 10.1002/ente.201500096. DOI
Fasaki I., Siamos K., Arin M., Lommens P., van Driessche I., Hopkins S.C., Glowacki B.A., Arabatzis I. Ultrasound assisted preparation of stable water-based nanocrystalline TiO2 suspensions for photocatalytic applications of inkjet-printed films. Appl. Catal. A. 2012;411:60–69. doi: 10.1016/j.apcata.2011.10.020. DOI
Zori M.H., Soleimani-Gorgani A. Ink-jet printing of micro-emulsion TiO2 nano-particles ink on the surface of glass. J. Eur. Ceram. Soc. 2012;32:4271–4277. doi: 10.1016/j.jeurceramsoc.2012.06.005. DOI
Oh Y., Yoon H.G., Lee S.N., Kim H.K., Kim J. Inkjet-printing of TiO2 co-solvent ink: From uniform ink-droplet to TiO2 photoelectrode for dye-sensitized solar cells. J. Electrochem. Soc. 2012;159:B35–B39. doi: 10.1149/2.024201jes. DOI
Černá M., Veselý M., Dzik P., Guillard C., Puzenat E., Lepičová M. Fabrication, characterization and photocatalytic activity of TiO2 layers prepared by inkjet printing of stabilized nanocrystalline suspensions. Appl. Catal. B. 2013;138–139:84–94. doi: 10.1016/j.apcatb.2013.02.035. DOI
Dzik P., Veselý M., Kete M., Pavlica E., Štangar U.L., Neumann-Spallart M. Properties and application perspective of hybrid titania-silica patterns fabricated by inkjet printing. ACS Appl. Mater. Interfaces. 2015;7:16177–16190. doi: 10.1021/acsami.5b03494. PubMed DOI
Gregori D., Benchenaa I., Chaput F., Therias S., Gardette J.L., Leonard D., Guillard C., Parola S. Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates. J. Mater. Chem. A. 2014;2:20096–20104. doi: 10.1039/C4TA03826F. DOI
Kaufman L. Calculation of multicomponent ceramic phase diagrams. Phys. B + C. 1988;150:99–114. doi: 10.1016/0378-4363(88)90111-8. DOI
Okada K., Yamamoto N., Kameshima Y., Yasumori A., MacKenzie K.J.D. Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 2001;84:1591–1596. doi: 10.1111/j.1151-2916.2001.tb00882.x. DOI
Tian L., Wang B., Chen R., Gao Y., Chen Y., Li T. Determination of quercetin using a photo-electrochemical sensor modified with titanium dioxide and a platinum(II)-porphyrin complex. Microchim. Acta. 2015;182:687–693. doi: 10.1007/s00604-014-1374-7. DOI
Jain R., Pandey P. Electrochemical sensor mediated by synthesis of CDO nanoparticles-titanium dioxide composite modified glassy carbon electrode for quantification of zolmitriptan. J. Electrochem. Soc. 2013;160:H687–H692. doi: 10.1149/2.030310jes. DOI
Neumann-Spallart M. Photoelectrochemistry on a planar, interdigitated electrochemical cell. Electrochim. Acta. 2011;56:8752–8757. doi: 10.1016/j.electacta.2011.07.089. DOI
Li F., Chen C., Tan F., Li C., Yue G., Shen L., Zhang W. Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Nanoscale Res. Lett. 2014;9:1–5. doi: 10.1186/1556-276X-9-579. PubMed DOI PMC
Ranjitha A., Muthukumarasamy N., Thambidurai M., Velauthapillai D., Kumar A.M., Gasem Z.M. Inverted organic solar cells based on CD-doped TiO2 as an electron extraction layer. Superlattices Microstruct. 2014;74:114–122. doi: 10.1016/j.spmi.2014.05.040. DOI
Thambidurai M., Kim J.Y., Ko Y., Song H.-J., Shin H., Song J., Lee Y., Lee C., Muthukumarasamy N., Velauthapillai D. High-efficiency inverted organic solar cells with polyethylene oxide-modified Zn-doped TiO2 as an interfacial electron transport layer. Nanoscale. 2014;6:8585–8589. doi: 10.1039/C4NR02780A. PubMed DOI
ISO 15184: Paints and Varnishes, Determination of Film Hardness by Pencil Test. ISO; Geneva, Switzerland: 1998.
Christensen M., Rasmussen J.T., Simonsen A.C. Roughness analysis of single nanoparticles applied to atomic force microscopy images of hydrated casein micelles. Food Hydrocoll. 2015;45:168–174. doi: 10.1016/j.foodhyd.2014.11.008. DOI
Littringer E.M., Mescher A., Schroettner H., Achelis L., Walzel P., Urbanetz N.A. Spray dried mannitol carrier particles with tailored surface properties—The influence of carrier surface roughness and shape. Eur. J. Pharm. Biopharm. 2012;82:194–204. doi: 10.1016/j.ejpb.2012.05.001. PubMed DOI
Cernigoj U., Kete M., Stangar U.L. Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal. Today. 2010;151:46–52. doi: 10.1016/j.cattod.2010.03.043. DOI