A flexible AFT model for misclassified clustered interval-censored data
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26444435
DOI
10.1111/biom.12424
Knihovny.cz E-zdroje
- Klíčová slova
- Bayesian approach, Mismeasured continuous response, Multivariate survival data,
- MeSH
- Bayesova věta MeSH
- časové faktory MeSH
- dítě MeSH
- lidé MeSH
- longitudinální studie * MeSH
- orální zdraví statistika a číselné údaje MeSH
- počítačová simulace MeSH
- shluková analýza * MeSH
- statistické modely * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.
Citace poskytuje Crossref.org