A CuAAC-Hydrazone-CuAAC Trifunctional Scaffold for the Solid-Phase Synthesis of Trimodal Compounds: Possibilities and Limitations
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MR/K000179/1
Medical Research Council - United Kingdom
PubMed
26512633
PubMed Central
PMC6332392
DOI
10.3390/molecules201019310
PII: molecules201019310
Knihovny.cz E-resources
- Keywords
- click chemistry, copper, hydrazide, hydrazone, multifunctional scaffold, protein mimics, solid-phase synthesis,
- MeSH
- Azides chemistry MeSH
- Click Chemistry MeSH
- Cycloaddition Reaction MeSH
- Hydrazones chemistry MeSH
- Catalysis MeSH
- Copper chemistry MeSH
- Molecular Mimicry MeSH
- Polyethylene Glycols chemistry MeSH
- Solid-Phase Synthesis Techniques MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Azides MeSH
- Hydrazones MeSH
- Copper MeSH
- Polyethylene Glycols MeSH
We present a trifunctional scaffold designed for the solid-phase synthesis of trimodal compounds. This scaffold holds two alkyne arms in a free and TIPS-protected form for consecutive CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition), one Fmoc-protected hydrazide arm for reaction with aldehydes, and one carboxylic acid arm with CF₂ groups for attachment to the resin and (19)F-NMR quantification. This scaffold was attached to a resin and derivatized with model azides and aliphatic, electron-rich or electron-poor aromatic aldehydes. We identified several limitations of the scaffold caused by the instability of hydrazones in acidic conditions, in the presence of copper during CuAAC, and when copper accumulated in the resin. We successfully overcame these drawbacks by optimizing synthetic conditions for the derivatization of the scaffold with aromatic aldehydes. Overall, the new trifunctional scaffold combines CuAAC and hydrazone chemistries, offering a broader chemical space for the development of bioactive compounds.
See more in PubMed
Beal D.M., Jones L.H. Molecular scaffolds using multiple orthogonal conjugations: Applications in chemical biology and drug discovery. Angew. Chem. Int. Ed. 2012;51:6320–6326. doi: 10.1002/anie.201200002. PubMed DOI
Iha R.K., Wooley K.L., Nyström A.M., Burke D.J., Kade M.J., Hawker C.J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem. Rev. 2009;109:5620–5686. doi: 10.1021/cr900138t. PubMed DOI PMC
Chamorro C., Kruijtzer J.A., Farsaraki M., Balzarini J., Liskamp R.M. A general approach for the non-stop solid phase synthesis of tac-scaffolded loops towards protein mimics containing discontinuous epitopes. Chem. Commun. 2009;7:821–823. doi: 10.1039/B817357E. PubMed DOI
Vaněk V., Pícha J., Fabre B., Buděšínský M., Lepšík M., Jiráček J. The development of a versatile trifunctional scaffold for biological applications. Eur. J. Org. Chem. 2015;17:3689–3701. doi: 10.1002/ejoc.201500255. DOI
Opatz T., Liskamp R.M.J. Synthesis and screening of libraries of synthetic tripodal receptor molecules with three different amino acid or peptide arms: Identification of iron binders. J. Comb. Chem. 2002;4:275–284. doi: 10.1021/cc020009s. PubMed DOI
Valverde I.E., Delmas A.F., Aucagne V. Click à la carte: Robust semi-orthogonal alkyne protecting groups for multiple successive azide/alkyne cycloadditions. Tetrahedron. 2009;65:7597–7602. doi: 10.1016/j.tet.2009.06.093. DOI
Nowick J.S., Chung D.M., Maitra K., Maitra S., Stigers K.D., Sun Y. An unnatural amino acid that mimics a tripeptide β-strand and forms β-sheetlike hydrogen-bonded dimers. J. Am. Chem. Soc. 2000;122:7654–7661. doi: 10.1021/ja001142w. DOI
Greene T.W., Wuts P.G. Protective Groups in Organic Synthesis. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 1998.
García-Martín F., Quintanar-Audelo M., García-Ramos Y., Cruz L.J., Gravel C., Furic R., Côté S., Tulla-Puche J., Albericio F. Chemmatrix, a poly (ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J. Comb. Chem. 2006;8:213–220. doi: 10.1021/cc0600019. PubMed DOI
García-Martín Y., Paradís-Bas M., Tulla-Puche J., Albericio F. Chemmatrix® for complex peptides and combinatorial chemistry. J. Pept. Sci. 2010;16:675–678. doi: 10.1002/psc.1282. PubMed DOI
Ramage R., Irving S., McInnes C. Design of a versatile linker for solid phase peptide synthesis: Synthesis of C-terminal primary/seconary amides and hydrazides. Tetrahedron Lett. 1993;34:6599–6602. doi: 10.1016/0040-4039(93)88115-Y. DOI
Ueki M., Amemiya M. Removal of 9-fluorenylmethyloxycarbonyl (fmoc) group with tetrabutylammonium fluoride. Tetrahedron Lett. 1987;28:6617–6620. doi: 10.1016/S0040-4039(00)96928-4. DOI
Isaad A.L., Papini A.M., Chorev M., Rovero P. Side chain-to-side chain cyclization by click reaction. J. Pept. Sci. 2009;15:451–454. doi: 10.1002/psc.1141. PubMed DOI
Tornoe C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. PubMed DOI
Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI
Montoya L.A., Pluth M.D. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chem. Commun. 2012;48:4767–4769. doi: 10.1039/c2cc30730h. PubMed DOI PMC
Liu C.R., Pan J., Li S., Zhao Y., Wu L.Y., Berkman C.E., Whorton A.R., Xian M. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem. Int. Ed. 2011;50:10327–10329. doi: 10.1002/anie.201104305. PubMed DOI PMC
Rao H.S.P., Siva P. Facile reduction of azides with sodium-borohydride copper(II) sulfate system. Synth. Commun. 1994;24:549–555.
Tian M.-Z., Hu M.-M., Fan J.-L., Peng X.-J., Wang J.-Y., Sun S.-G., Zhang R. Rhodamine-based “turn-on” fluorescent probe for Cu(II) and its fluorescence imaging in living cells. Bioorg. Med. Chem. Lett. 2013;23:2916–2919. doi: 10.1016/j.bmcl.2013.03.052. PubMed DOI
Huang C.-H., Stone A.T. Transformation of the plant growth regulator daminozide (alar) and structurally related compounds with cuii ions: Oxidation versus hydrolysis. Environ. Sci. Technol. 2003;37:1829–1837. doi: 10.1021/es026244w. PubMed DOI
Kumar M., Kumar N., Bhalla V., Sharma P.R., Kaur T. Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org. Lett. 2012;14:406–409. doi: 10.1021/ol203186b. PubMed DOI
Fu F.L., Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011. PubMed DOI
Bradley D., Williams G., Lawton M. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 2010;75:8351–8354. PubMed