• This record comes from PubMed

Evolution of early male-killing in horizontally transmitted parasites

. 2015 Nov 07 ; 282 (1818) : 20152068.

Language English Country England, Great Britain Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Early male-killing (MK) bacteria are vertically transmitted reproductive parasites which kill male offspring that inherit them. Whereas their incidence is well documented, characteristics allowing originally non-MK bacteria to gradually evolve MK ability remain unclear. We show that horizontal transmission is a mechanism enabling vertically transmitted bacteria to evolve fully efficient MK under a wide range of host and parasite characteristics, especially when the efficacy of vertical transmission is high. We also show that an almost 100% vertically transmitted and 100% effective male-killer may evolve from a purely horizontally transmitted non-MK ancestor, and that a 100% efficient male-killer can form a stable coexistence only with a non-MK bacterial strain. Our findings are in line with the empirical evidence on current MK bacteria, explain their high efficacy in killing infected male embryos and their variability within and across insect taxa, and suggest that they may have evolved independently in phylogenetically distinct species.

See more in PubMed

Hurst GDD, Jiggins FM. 2000. Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg. Infect. Dis. 6, 329–336. (10.3201/eid0604.000402) PubMed DOI PMC

Jiggins FM, Bentley JK, Majerus MEN, Hurst GDD. 2001. How many species are infected with Wolbachia? Cryptic sex ratio distorters revealed to be common by intensive sampling. Proc. R. Soc. B 268, 1123–1126. (10.1098/rspb.2001.1632) PubMed DOI PMC

Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nature 6, 741–751. (10.1038/nrmicro1969) PubMed DOI

Nakanishi K, Hoshino M, Nakai M, Kunimi Y. 2008. Novel RNA sequences associated with late male killing in Homona magnanima. Proc. R. Soc. B 275, 1249–1254. (10.1098/rspb.2008.0013) PubMed DOI PMC

Engelstädter J, Hurst GDD. 2009. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. S 40, 127–149. (10.1146/annurev.ecolsys.110308.120206) DOI

Charlat S, Hurst GDD, Mercot H. 2003. Evolutionary consequences of Wolbachia infections. Trends Genet. 19, 217–223. (10.1016/S0168-9525(03)00024-6) PubMed DOI

Charlat S, Hurst GDD, Mercot H. 2007. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277. (10.1016/j.cub.2006.11.068) PubMed DOI

Bacelar FS, White A, Boots M. 2011. Life history and mating systems select for male biased parasitism mediated through natural selection and ecological feedbacks. J. Theor. Biol. 269, 131–137. (10.1016/j.jtbi.2010.10.004) PubMed DOI

Jiggins FM, Hurst GDD, Majerus MEN. 2000. Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proc. R. Soc. Lond. B 267, 69–73. (10.1098/rspb.2000.0968) PubMed DOI PMC

Hurst LD. 1991. The incidences and evolution of cytoplasmic male killers. Proc. R. Soc. Lond. B 244, 91–99. (10.1098/rspb.1991.0056) DOI

Groenenboom MAC, Hogeweg P. 2002. Space and the persistence of male-killing endosymbionts in insect populations. Proc. R. Soc. B 269, 2509–2518. (10.1098/rspb.2002.2197) PubMed DOI PMC

Caswell H, Weeks DE. 1986. Two-sex models: chaos, extinction, and other dynamic consequences of sex. Am. Nat. 128, 707–735. (10.1086/284598) DOI

Miller TEX, Inouye BD. 2011. Confronting two-sex demographic models with data. Ecology 92, 2141–2151. (10.1890/11-0028.1) PubMed DOI

Alizon S, Hurford A, Mideo N, van Baalen M. 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259. (10.1111/j.1420-9101.2008.01658.x) PubMed DOI

Turner PE. 2004. Phenotypic plasticity in bacterial plasmids. Genetics 167, 9–20. (10.1534/genetics.167.1.9) PubMed DOI PMC

Stewart AD, Logsdon JM Jr, Kelley SE. 2005. An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59, 730–739. (10.1554/03-330) PubMed DOI

Kageyama D, Anbutsu H, Watada M, Hosokawa T, Shimada M, Fukatsu T. 2006. Prevalence of a non-male-killing Spiroplasma in natural populations of Drosophila hydei. Appl. Environ. Microbiol. 72, 6667–6673. (10.1128/AEM.00803-06) PubMed DOI PMC

Geritz SAH, Kisdi E, Meszena G, Metz JAJ. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57. (10.1023/A:1006554906681) DOI

Charlat S, Hornett EA, Dyson EA, Ho PPY, Loc NT, Schilthuizen M, Davies N, Roderick GK, Hurst GDD. 2005. Prevalence and penetrance variation of male-killing Wolbachia across Indo-Pacific populations of the butterfly Hypolimnas bolina. Mol. Ecol. 14, 3525–3530. (10.1111/j.1365-294X.2005.02678.x) PubMed DOI

Dyson EA, Kamath MK, Hurst GDD. 2002. Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88, 166–171. (10.1038/sj.hdy.6800021) PubMed DOI

Majerus TMO, Majerus MEN. 2010. Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae). BMC Evol. Biol. 10, 37 (10.1186/1471-2148-10-37) PubMed DOI PMC

Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R. 2000. Infectious parthenogenesis. Nature 405, 178–179. (10.1038/35012066) PubMed DOI

Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R. 2004. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. Lond. B 271, 509–515. (10.1098/rspb.2003.2640) PubMed DOI PMC

Majerus MEN, Hinrich J, Schulenburg GVD, Zakharov IA. 2000. Multiple causes of male-killing in a single sample of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) from Moscow. Heredity 84, 605–609. (10.1046/j.1365-2540.2000.00710.x) PubMed DOI

Freeland SJ, McCabe BK. 1997. Fitness compensation and the evolution of selfish cytoplasmic elements. Heredity 78, 391–402. (10.1038/hdy.1997.62) DOI

Randerson JP, Smith NGC, Hurst LD. 2000. The evolutionary dynamics of male-killers and their hosts. Heredity 84, 152–160. (10.1046/j.1365-2540.2000.00645.x) PubMed DOI

Werren JH, Skinner SW, Huger AM. 1986. Male-killing bacteria in a parasitic wasp. Science 231, 990–992. (10.1126/science.3945814) PubMed DOI

Ironside JE, Smith JE, Hatcher MJ, Dunn AM. 2011. Should sex-ratio distorting parasites abandon horizontal transmission? BMC Evol. Biol. 11, 370 (10.1186/1471-2148-11-370) PubMed DOI PMC

Yamauchi A, Telschow A, Kobayashi Y. 2010. Evolution of cytoplasmic sex ratio distorters: effect of paternal transmission. J. Theor. Biol. 266, 79–87. (10.1016/j.jtbi.2010.06.018) PubMed DOI

Engelstädter J, Hurst GDD. 2009. What use are male hosts? The dynamics of maternally inherited bacteria showing sexual transmission or male killing. Am. Nat. 173, E159–E170. (10.1086/597375) PubMed DOI

Vautrin E, Vavre F. 2009. Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol. 17, 95–99. (10.1016/j.tim.2008.12.002) PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...