Evolution of early male-killing in horizontally transmitted parasites
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26538596
PubMed Central
PMC4650162
DOI
10.1098/rspb.2015.2068
PII: rspb.2015.2068
Knihovny.cz E-resources
- Keywords
- Wolbachia, adaptive dynamics, horizontal transmission, population dynamics, reproductive parasite, sex-ratio distortion,
- MeSH
- Bacteria classification genetics MeSH
- Biological Evolution * MeSH
- Bacterial Physiological Phenomena MeSH
- Insecta embryology microbiology MeSH
- Host-Pathogen Interactions * MeSH
- Sex Ratio MeSH
- Disease Transmission, Infectious * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Early male-killing (MK) bacteria are vertically transmitted reproductive parasites which kill male offspring that inherit them. Whereas their incidence is well documented, characteristics allowing originally non-MK bacteria to gradually evolve MK ability remain unclear. We show that horizontal transmission is a mechanism enabling vertically transmitted bacteria to evolve fully efficient MK under a wide range of host and parasite characteristics, especially when the efficacy of vertical transmission is high. We also show that an almost 100% vertically transmitted and 100% effective male-killer may evolve from a purely horizontally transmitted non-MK ancestor, and that a 100% efficient male-killer can form a stable coexistence only with a non-MK bacterial strain. Our findings are in line with the empirical evidence on current MK bacteria, explain their high efficacy in killing infected male embryos and their variability within and across insect taxa, and suggest that they may have evolved independently in phylogenetically distinct species.
See more in PubMed
Hurst GDD, Jiggins FM. 2000. Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg. Infect. Dis. 6, 329–336. (10.3201/eid0604.000402) PubMed DOI PMC
Jiggins FM, Bentley JK, Majerus MEN, Hurst GDD. 2001. How many species are infected with Wolbachia? Cryptic sex ratio distorters revealed to be common by intensive sampling. Proc. R. Soc. B 268, 1123–1126. (10.1098/rspb.2001.1632) PubMed DOI PMC
Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nature 6, 741–751. (10.1038/nrmicro1969) PubMed DOI
Nakanishi K, Hoshino M, Nakai M, Kunimi Y. 2008. Novel RNA sequences associated with late male killing in Homona magnanima. Proc. R. Soc. B 275, 1249–1254. (10.1098/rspb.2008.0013) PubMed DOI PMC
Engelstädter J, Hurst GDD. 2009. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. S 40, 127–149. (10.1146/annurev.ecolsys.110308.120206) DOI
Charlat S, Hurst GDD, Mercot H. 2003. Evolutionary consequences of Wolbachia infections. Trends Genet. 19, 217–223. (10.1016/S0168-9525(03)00024-6) PubMed DOI
Charlat S, Hurst GDD, Mercot H. 2007. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277. (10.1016/j.cub.2006.11.068) PubMed DOI
Bacelar FS, White A, Boots M. 2011. Life history and mating systems select for male biased parasitism mediated through natural selection and ecological feedbacks. J. Theor. Biol. 269, 131–137. (10.1016/j.jtbi.2010.10.004) PubMed DOI
Jiggins FM, Hurst GDD, Majerus MEN. 2000. Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proc. R. Soc. Lond. B 267, 69–73. (10.1098/rspb.2000.0968) PubMed DOI PMC
Hurst LD. 1991. The incidences and evolution of cytoplasmic male killers. Proc. R. Soc. Lond. B 244, 91–99. (10.1098/rspb.1991.0056) DOI
Groenenboom MAC, Hogeweg P. 2002. Space and the persistence of male-killing endosymbionts in insect populations. Proc. R. Soc. B 269, 2509–2518. (10.1098/rspb.2002.2197) PubMed DOI PMC
Caswell H, Weeks DE. 1986. Two-sex models: chaos, extinction, and other dynamic consequences of sex. Am. Nat. 128, 707–735. (10.1086/284598) DOI
Miller TEX, Inouye BD. 2011. Confronting two-sex demographic models with data. Ecology 92, 2141–2151. (10.1890/11-0028.1) PubMed DOI
Alizon S, Hurford A, Mideo N, van Baalen M. 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259. (10.1111/j.1420-9101.2008.01658.x) PubMed DOI
Turner PE. 2004. Phenotypic plasticity in bacterial plasmids. Genetics 167, 9–20. (10.1534/genetics.167.1.9) PubMed DOI PMC
Stewart AD, Logsdon JM Jr, Kelley SE. 2005. An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59, 730–739. (10.1554/03-330) PubMed DOI
Kageyama D, Anbutsu H, Watada M, Hosokawa T, Shimada M, Fukatsu T. 2006. Prevalence of a non-male-killing Spiroplasma in natural populations of Drosophila hydei. Appl. Environ. Microbiol. 72, 6667–6673. (10.1128/AEM.00803-06) PubMed DOI PMC
Geritz SAH, Kisdi E, Meszena G, Metz JAJ. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57. (10.1023/A:1006554906681) DOI
Charlat S, Hornett EA, Dyson EA, Ho PPY, Loc NT, Schilthuizen M, Davies N, Roderick GK, Hurst GDD. 2005. Prevalence and penetrance variation of male-killing Wolbachia across Indo-Pacific populations of the butterfly Hypolimnas bolina. Mol. Ecol. 14, 3525–3530. (10.1111/j.1365-294X.2005.02678.x) PubMed DOI
Dyson EA, Kamath MK, Hurst GDD. 2002. Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88, 166–171. (10.1038/sj.hdy.6800021) PubMed DOI
Majerus TMO, Majerus MEN. 2010. Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae). BMC Evol. Biol. 10, 37 (10.1186/1471-2148-10-37) PubMed DOI PMC
Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R. 2000. Infectious parthenogenesis. Nature 405, 178–179. (10.1038/35012066) PubMed DOI
Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R. 2004. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. Lond. B 271, 509–515. (10.1098/rspb.2003.2640) PubMed DOI PMC
Majerus MEN, Hinrich J, Schulenburg GVD, Zakharov IA. 2000. Multiple causes of male-killing in a single sample of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) from Moscow. Heredity 84, 605–609. (10.1046/j.1365-2540.2000.00710.x) PubMed DOI
Freeland SJ, McCabe BK. 1997. Fitness compensation and the evolution of selfish cytoplasmic elements. Heredity 78, 391–402. (10.1038/hdy.1997.62) DOI
Randerson JP, Smith NGC, Hurst LD. 2000. The evolutionary dynamics of male-killers and their hosts. Heredity 84, 152–160. (10.1046/j.1365-2540.2000.00645.x) PubMed DOI
Werren JH, Skinner SW, Huger AM. 1986. Male-killing bacteria in a parasitic wasp. Science 231, 990–992. (10.1126/science.3945814) PubMed DOI
Ironside JE, Smith JE, Hatcher MJ, Dunn AM. 2011. Should sex-ratio distorting parasites abandon horizontal transmission? BMC Evol. Biol. 11, 370 (10.1186/1471-2148-11-370) PubMed DOI PMC
Yamauchi A, Telschow A, Kobayashi Y. 2010. Evolution of cytoplasmic sex ratio distorters: effect of paternal transmission. J. Theor. Biol. 266, 79–87. (10.1016/j.jtbi.2010.06.018) PubMed DOI
Engelstädter J, Hurst GDD. 2009. What use are male hosts? The dynamics of maternally inherited bacteria showing sexual transmission or male killing. Am. Nat. 173, E159–E170. (10.1086/597375) PubMed DOI
Vautrin E, Vavre F. 2009. Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol. 17, 95–99. (10.1016/j.tim.2008.12.002) PubMed DOI