Recombinant Human Bone Morphogenetic Protein 6 Enhances Oocyte Reprogramming Potential and Subsequent Development of the Cloned Yak Embryos
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26655079
PubMed Central
PMC4677541
DOI
10.1089/cell.2015.0049
Knihovny.cz E-zdroje
- MeSH
- apoptóza MeSH
- blastocysta cytologie MeSH
- embryo savčí cytologie MeSH
- fertilizace in vitro MeSH
- fluorescenční mikroskopie MeSH
- klonování organismů metody MeSH
- kostní morfogenetický protein 6 farmakologie MeSH
- lidé MeSH
- oocyty cytologie MeSH
- ovarium patologie MeSH
- přeprogramování buněk MeSH
- rekombinantní proteiny metabolismus MeSH
- skot MeSH
- stanovení celkové genové exprese MeSH
- techniky jaderného přenosu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BMP6 protein, human MeSH Prohlížeč
- kostní morfogenetický protein 6 MeSH
- rekombinantní proteiny MeSH
This study investigated the effects of bone morphogenetic protein 6 (BMP6) supplementation in the medium during in vitro maturation (IVM) on the developmental potential of oocytes and in the subsequent development of cloned yak embryos. Cumulus-oocyte complexes (COCs) were aspirated from the antral follicles of yak ovaries and cultured with different concentrations of recombinant human BMP6 in oocyte maturation medium. Following maturation, the metaphase II (MII) oocytes were used for somatic cell nuclear transfer (SCNT), and these were cultured in vitro. The development of blastocysts and cell numbers were detected on day 8. The apoptosis and histone modifications of yak cloned blastocysts were evaluated by detecting the expression of relevant genes and proteins (Bax, Bcl-2, H3K9ac, H3K18ac, and H3K9me3) using relative quantitative RT-PCR or immunofluorescence. The presence of 100 ng/mL BMP6 significantly enhanced the oocyte maturation ratios (66.12 ± 2.04% vs. 73.11 ± 1.38%), cleavage rates (69.40 ± 1.03% vs. 78.16 ± 0.93%), and blastocyst formation rates (20.63 ± 1.32% vs. 28.16 ± 1.67%) of cloned yak embryos. The total blastocysts (85.24 ± 3.12 vs. 103.36 ± 5.28), inner cell mass (ICM) cell numbers (19.59 ± 2.17 vs. 32.20 ± 2.61), and ratio of ICM to trophectoderm (TE) (22.93 ± 1.43% vs. 31.21 ± 1.62%) were also enhanced (p < 0.05). The ratio of the Bax to the Bcl-2 gene was lowest in the SCNT + BMP6 groups (p < 0.05). The H3K9ac and H3K18ac levels were increased in SCNT + BMP6 groups (p < 0.05), whereas the H3K9me3 level was decreased; the differences in blastocysts were not significant (p > 0.05). These study results demonstrate that addition of oocyte maturation medium with recombinant BMP6 enhances yak oocyte developmental potential and the subsequent developmental competence of SCNT embryos, and provides evidence that BMP6 is an important determinant of mammalian oocyte developmental reprogramming.
Zobrazit více v PubMed
Baguisi A., Behboodi E., Melican D.T., Pollock J.S., Destrempes M.M., Cammuso C., Williams J.L., Nims S.D., Porter C.A., and Midura P. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461 PubMed
Buccione R., Schroeder A.C., and Eppig J.J. (1990). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–547 PubMed
Campbell B., Kendall N., and Baird D. (2009). Effect of direct ovarian infusion of bone morphogenetic protein 6 (BMP6) on ovarian function in sheep. Biol. Reprod. 81, 1016–1023 PubMed
Chian R., and Sirard M. (1995). Effects of cumulus cells and follicle‐stimulating hormone during in vitro maturation on parthenogenetic activation of bovine oocytes. Mol. Reprod. Dev. 42, 425–431 PubMed
Dai X., Hao J., Hou X.-j., Hai T., Fan Y., Yu Y., Jouneau A., Wang L., and Zhou Q. (2010). Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. J. Biol. Chem. 285, 31002–31010 PubMed PMC
Das Z.C., Gupta M.K., Uhm S.J., and Lee H.T. (2010). Increasing histone acetylation of cloned embryos, but not donor cells, by sodium butyrate improves their in vitro development in pigs. Cell. Reprogram. 12, 95–104 PubMed
Eppig J.J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–838 PubMed
Eppig J.J., Pendola F.L., Wigglesworth K., and Pendola J.K. (2005). Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: Amino acid transport. Biol. Reprod. 73, 351–357 PubMed
Fatehi A., Zeinstra E., Kooij R., Colenbrander B., and Bevers M. (2002). Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57, 1347–1355 PubMed
Gilchrist R., Ritter L., and Armstrong D. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82, 431–446 PubMed
Gilchrist R.B., Lane M., and Thompson J.G. (2008). Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177 PubMed
Hardy K. (1997). Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 3, 919–925 PubMed
Hussein T.S., Froiland D.A., Amato F., Thompson J.G., and Gilchrist R.B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268 PubMed
Hussein T.S., Thompson J.G., and Gilchrist R.B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521 PubMed
Hussein T.S., Sutton M.D., Melanie L., Gilchrist R.B., and Thompson J.G. (2011). Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM. Reprod. Fertil. Dev. 23, 576–584 PubMed
Jones P.L., Veenstra G.J., Wade P.A., Vermaak D., Kass S.U., Landsberger N., Strouboulis J., and Wolffe A.P. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 PubMed
Karatzas G., Karagiannidis A., Varsakeli S., and Brikas P. (1997). Fertility of fresh and frozen-thawed goat semen during the nonbreeding season. Theriogenology 48, 1049–1059 PubMed
Kato Y., Tani T., Sotomaru Y., Kurokawa K., Kato J.-y., Doguchi H., Yasue H., and Tsunoda Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098 PubMed
Korsmeyer S.J. (1999). BCL-1 gene family and the regulation of programmed cell death. Cancer Research 59, 1693–1700 PubMed
Lee B.C., Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J., Shamim M.H., Kim J.J., Kang S.K., and Schatten G. (2005). Dogs cloned from adult somatic cells. Nature 436, 641–641 PubMed
Li J., Svarcova O., Villemoes K., Kragh P.M., Schmidt M., Bøgh I.B., Zhang Y., Du Y., Lin L., and Purup S. (2008). High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70, 800–808 PubMed
Li Z., Sun X., Chen J., Liu X., Wisely S.M., Zhou Q., Renard J.-P., Leno G.H., and Engelhardt J.F. (2006). Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 293, 439–448 PubMed PMC
Liu B., Zhang H., Hao M., and Yu S. (2012). Establishment and characterization of two fetal fibroblast cell lines from the yak. In Vitro Cell. Dev. Biol. Anim. 48, 619–624 PubMed
Murata K., Kouzarides T., Bannister A.J., and Gurdon J.B. (2010). Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin 3, 4. PubMed PMC
Nan X., Ng H.-H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., and Bird A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 PubMed
Onishi A., Iwamoto M., Akita T., Mikawa S., Takeda K., Awata T., Hanada H., and Perry A.C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190 PubMed
Paradis F., Novak S., Murdoch G.K., Dyck M.K., Dixon W.T., and Foxcroft G.R. (2009). Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 138, 115–129 PubMed
Parrish J.J., Susko-Parrish J., Winer M.A., and First N.L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180 PubMed
Pfaffl M.W., Horgan G.W., and Dempfle L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36–e36 PubMed PMC
Santos-Rosa H., Schneider R., Bannister A.J., Sherriff J., Bernstein B.E., Emre N.T., Schreiber S.L., Mellor J., and Kouzarides T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 PubMed
Sarkar M., and Prakash B.S. (2005). Circadian variations in plasma concentrations of melatonin and prolactin during breeding and non-breeding seasons in yak (Poephagus grunniens L.). Anim. Reprod. Sci. 90, 149–162 PubMed
Shao G.-B., Ding H.-M., and Gong A.-H. (2008). Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell. Dev. Biol. Anim. 44, 115–120 PubMed
Shi J., Yoshino O., Osuga Y., Koga K., Hirota Y., Hirata T., Yano T., Nishii O., and Taketani Y. (2009). Bone morphogenetic protein-6 stimulates gene expression of follicle-stimulating hormone receptor, inhibin/activin β subunits, and anti-Müllerian hormone in human granulosa cells. Fertil. Steril. 92, 1794–1798 PubMed
Shi Y., and Massagué J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 PubMed
Su J., Wang Y., Li Y., Li R., Li Q., Wu Y., Quan F., Liu J., Guo Z., and Zhang Y. (2011). Oxamflatin significantly improves nuclear reprogramming, blastocyst quality, and in vitro development of bovine SCNT embryos. PloS One 6, e23805. PubMed PMC
Su J., Wang Y., Li R., Peng H., Hua S., Li Q., Quan F., Guo Z., and Zhang Y. (2012). Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle. PloS One 7, e36181. PubMed PMC
Su J., Hu G., Wang Y., Liang D., Gao M., Sun H., and Zhang Y. (2014a). Recombinant human growth differentiation factor-9 improves oocyte reprogramming competence and subsequent development of bovine cloned embryos. Cell. Reprogram. 16, 281–289 PubMed
Su J., Wang Y., Zhang L., Wang B., Liu J., Luo Y., Guo Z., Quan F., and Zhang Y. (2014b). Oocyte‐secreted factors in oocyte maturation media enhance subsequent development of bovine cloned embryos. Mol. Reprod. Devel. 81, 341–349 PubMed
Sugiura K., Su Y.-Q., and Eppig J.J. (2010). Does bone morphogenetic protein 6 (BMP6) affect female fertility in the mouse? Biol. Reprod. 83, 997–1004 PubMed PMC
Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., and Yanagimachi R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 PubMed
Wang X.-L., Wang K., Zhao S., Wu Y., Gao H., and Zeng S.-M. (2013). Oocyte-secreted growth differentiation factor 9 inhibits BCL-2-interacting mediator of cell death-extra long expression in porcine cumulus cell. Biol. Reproduction 89, 56 PubMed
Wang Y., Su J., Wang L., Xu W., Quan F., Liu J., and Zhang Y. (2011). The effects of 5-aza-2′-deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cell. Reprogram. 13, 297–306 PubMed PMC
Wee G., Shim J.-J., Koo D.-B., Chae J.-I., Lee K.-K., and Han Y.-M. (2007). Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134, 781–787 PubMed
Wilmut I., Schnieke A.E., McWhir J., Kind A.J., and Campbell K.H. (1999). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 PubMed
Yamanaka K.-i., Sugimura S., Wakai T., Kawahara M., and Sato E. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 55, 638–644 PubMed
Yang X., Smith S.L., Tian X.C., Lewin H.A., Renard J.-P., and Wakayama T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302 PubMed
Yeo C.X., Gilchrist R.B., Thompson J.G., and Lane M. (2008). Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum. Reprod. 23, 67–73 PubMed
Yu S.J., and Li F.D. (2001). Profiles of plasma progesterone before and at the onset of puberty in yak heifers. Anim. Reprod. Sci. 65, 67–73 PubMed
Zhang L., Jiang S., Wozniak P.J., Yang X., and Godke R.A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–344 PubMed
Zi X.D. (2003). Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 59, 1303–1312 PubMed