Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26793273
PubMed Central
PMC4719659
DOI
10.1186/s13068-016-0436-y
PII: 436
Knihovny.cz E-zdroje
- Klíčová slova
- Butanol, Clostridium, Conjugation, Dam, Dcm, Electroporation, Methylation, Sonoporation, Transformation,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of its whole genome sequence. However, there is no established method for the transfer of foreign DNA into this strain; this is the next step necessary for progress in its use for butanol production. RESULTS: We have described functional protocols for conjugation and transformation of the bio-butanol producer C. pasteurianum NRRL B-598 by foreign plasmid DNA. We show that the use of unmethylated plasmid DNA is necessary for efficient transformation or successful conjugation. Genes encoding DNA methylation and those for restriction-modification systems and antibiotic resistance were searched for in the whole genome sequence and their homologies with other clostridial bacteria were determined. Furthermore, activity of described novel type I restriction system was proved experimentally. The described electrotransformation protocol achieved an efficiency 1.2 × 10(2) cfu/μg DNA after step-by-step optimization and an efficiency of 1.6 × 10(2) cfu/μg DNA was achieved by the sonoporation technique using a standard laboratory ultrasound bath. The highest transformation efficiency was achieved using a combination of these approaches; sono/electroporation led to an increase in transformation efficiency, to 5.3 × 10(2) cfu/μg DNA. CONCLUSIONS: Both Dam and Dcm methylations are detrimental for transformation of C. pasteurianum NRRL B-598. Methods for conjugation, electroporation, sonoporation, and a combined method for sono/electroporation were established for this strain. The methods described could be used for genetic improvement of this strain, which is suitable for bio-butanol production.
Zobrazit více v PubMed
Panagiotopoulos IA, Bakker RR, de Vrije T, Claassen PA, Koukios EG. Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw. Bioresource Technol. 2013 PubMed
Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev. 1986;50:484–524. PubMed PMC
Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv. 2013 PubMed
Wang Y, Li XZ, Mao YJ, Blaschek HP. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics. 2012 PubMed PMC
Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, et al. Problems with the microbial production of butanol. J Ind Microbiol Biot. 2009 PubMed
Purdy D, O’Keeffe TAT, Elmore M, Herbert M, McLeod A, Bokori-Brown M, et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol. 2002 PubMed
Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, et al. The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Meth. 2010 PubMed
Jennert KC, Tardif C, Young DI, Young M. Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology. 2000 PubMed
Reysset G, Hubert J, Podvin L, Sebald M. Transfection and transformation of Clostridium acetobutylicum strain N1-4081 protoplasts. Biotechnol Tech. 1988;2:199–204. doi: 10.1007/BF01875765. DOI
Lin YL, Blaschek HP. Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA. Appl Environ Microb. 1984;48:737–742. PubMed PMC
Allen SP, Blaschek HP. Electroporation-induced transformation of intact cells of Clostridium perfringens. Appl Environ Microb. 1988;54:2322–2324. PubMed PMC
Pyne ME, Moo-Young M, Chung DA, Chou CP. Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. Biotechnol Biofuels. 2013 PubMed PMC
Leang C, Ueki T, Nevin KP, Lovley DR. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microb. 2013 PubMed PMC
Oultram JD, Loughlin M, Swinfield TJ, Brehm JK, Thompson DE, Minton NP. Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microb Lett. 1988
Yoshino S, Yoshino T, Hara S, Ogata S, Hayashida S. Construction of shuttle vector plasmid between Clostridium acetobutylicum and Escherichia coli. Agr Biol Chem Tokyo. 1990 PubMed
Lin L, Song H, Ji Y, He Z, Pu Y, Zhou J, et al. Ultrasound-mediated DNA transformation in thermophilic gram-positive anaerobes. PloS One. 2010 PubMed PMC
Kolek J, Patakova P, Melzoch K, Sigler K, Rezanka T. Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis. PloS One. 2015 PubMed PMC
Kolek J, Sedlar K, Provaznik I, Patakova P. Draft genome sequence of Clostridium pasteurianum NRRL B-598, a potential butanol or hydrogen producer. Genome Announc. 2014 PubMed PMC
Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol. 2015 PubMed
Pyne ME, Bruder M, Moo-Young M, Chung DA, Chou CP. Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnol Adv. 2014 PubMed
Heap JT, Pennington OJ, Cartman ST, Minton NP. A modular system for Clostridium shuttle plasmids. J Microbiol Meth. 2009 PubMed
Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET. Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat Biotechnol. 1992 PubMed
Lesiak JM, Liebl W, Ehrenreich A. development of an in vivo methylation system for the solventogen Clostridium saccharobutylicum NCP 262 and analysis of two endonuclease mutants. J Biotechnol. 2014 PubMed
Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003 PubMed PMC
Blaschek HP, Formanek J, Chen CK. Clostridium in biotechnology and food technology. In: Eynard N, Teissie J, editors. Electrotransformation of Bacteria. New York: Springer; 2000. pp. 49–55.
McDonald IR, Riley PW, Sharp RJ, McCarthy AJ. Factors affecting the electroporation of Bacillus subtilis. J Appl Bacteriol. 1995 PubMed
Kashket ER, Cao ZY. Clostridial strain degeneration. FEMS Microbiol Rev. 1995
Patakova P, Lipovsky J, Cizkova H, Fortova J, Rychtera M, Melzoch K. Exploitation of food feedstock and waste for production of biobutanol. Czech J Food Sci. 2009;27:276–283.
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol R. 2013 PubMed PMC
Blumenthal RM, Xiaodong C. Restriction-modification systems. In: Streips UN, Yasbin RE, editors. Modern microbial genetics. 2. New York: Wiley; 2002. pp. 178–225.
Hoffman LM, Haskins DJ, Jendrisak J. TypeOne™ inhibitor improves transformation efficiencies by blocking type I restriction and modification systems in vivo. Epicentre Forum. 2002;9:8.
Gonzalez-Ceron G, Miranda-Olivares OJ, Servin-Gonzalez L. Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiol Lett. 2009 PubMed
Spath K, Heinl S, Grabherr R. Direct cloning in Lactobacillus plantarum: electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete. Microb Cell Fact. 2012;11:141. doi: 10.1186/1475-2859-11-141. PubMed DOI PMC
Zhang G, Wang W, Deng A, Sun Z, Zhang Y, Liang Y, et al. A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genetics. 2012 PubMed PMC
Guss AM, Olson DG, Caiazza NC, Lynd LR. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels. 2012 PubMed PMC
de la Campa AG, Springhorn SS, Kale P, Lacks SA. Proteins encoded by the DpnI restriction gene cassette. Hyperproduction and characterization of the DpnI endonuclease. J Biol Chem. 1988;263:14696–14702. PubMed
Song Y, Hahn T, Thompson IP, Mason TJ, Preston GM, Li G, et al. Ultrasound-mediated DNA transfer for bacteria. Nucleic acids res. 2007 PubMed PMC
Fitzgerald NB, English RS, Lampel JS, Vanden Boom TJ. Sonication-dependent electroporation of the erythromycin-producing bacterium Saccharopolyspora erythraea. Appl Environ Microb. 1998;64:1580–1583. PubMed PMC
Mazy-Servais C, Baczkowski D, Dusart J. Electroporation of intact cells of Streptomyces parvulus and Streptomyces vinaceus. FEMS Microb Lett. 1997 PubMed
Hongo M, Murata A, Kono K, Kato F. Lysogeny and bacteriocinogeny in strains of Clostridium species. Agr Biol Chem Tokyo. 1968
O’Brien RW, Morris JG. Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol. 1971 PubMed
Baer SH, Blaschek HP, Smith TL. Effect of butanol challenge and temperature on lipid Composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microb. 1987;53:2854–2861. PubMed PMC
Li YH, Mandelco L, Wiegel J. Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum Sp Nov. Int J Syst Bacteriol. 1993
Minton NP, Morris JG. Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013. J Bacteriol. 1983;155:432–434. PubMed PMC
Richards DF, Linnett PE, Oultram JD, Young M. Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM 568. J Gen Microbiol. 1988 PubMed
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010 PubMed PMC
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Ch. 2013 PubMed PMC
Novel thermophilic polyhydroxyalkanoates producing strain Aneurinibacillus thermoaerophilus CCM 8960
Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation
A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock