• This record comes from PubMed

Herbivory in the soft coral Sinularia flexibilis (Alcyoniidae)

. 2016 Mar 08 ; 6 () : 22679. [epub] 20160308

Language English Country England, Great Britain Media electronic

Document type Journal Article

Our work provides strong support for the hypothesis that Sinularia flexibilis ingests diatoms such as Thalassiosira pseudonana. We assessed algal ingestion by S. flexibilis through estimates of algal removal, histological analyses, scanning electron microscopy observations, and gene expression determination (18S and silicon transporter 1) by real time PCR. Cell counts are strongly suggestive of algal removal by the coral; light and scanning microscopy provide qualitative evidence for the ingestion of T. pseudonana by S. flexibilis, while molecular markers did not prove to be sufficiently selective/specific to give clear results. We thus propose that previous instances of inability of corals to ingest algae are reconsidered using different technical approach, before concluding that coral herbivory is not a general feature.

See more in PubMed

Yonge C. M. The Significance of the Relationship between Corals and Zooxanthellæ. Nature 128, 309–311 (1931).

Anthony K. R. N. & Fabricius K. E. Shifting roles of heterotrophy and autotrophy in coral energetic under varying turbidity. J. Exp. Mar. Biol. Ecol. 252, 221–253 (2000). PubMed

Houlbrèque F. & Ferrier-Pagès C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009). PubMed

Iluz D. & Dubinsky Z. Coral photobiology: new light on old views. Zoology 118, 71–78 (2005). PubMed

Dubinsky Z. & Jokiel P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac. Sci. 48, 313–324 (1994).

Anthony K. R. M. & Connolly S. R. Environmental limits to growth: physiological niche boundaries of corals along turbidity–light gradients. Oecologia 141, 373–384 (2004) PubMed

Rosenfeld M., Bresler V. & Abelson A. Sediment as a possible source of food for corals. Ecol. Lett. 2, 345–348 (1999).

Sorokin Y. I. On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol. Oceanogr. 18, 380–386 (1973).

Fitt W. & Cook C. The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarians. Mar. Biol. 139, 507–517 (2001).

Ferrier-Pagès C., Allemand D., Gattuso J. P., Jaubert J. & Rassoulzadegan F. Micro-heterotrophic versus autotrophic nutrition in the zooxanthellate coral Stylophora pistillata. Limnol. Oceanogr. 43, 1639–1648 (1998).

Coles S. L. Quantitative estimates of feeding and respiration for three scleractinian corals Limnol. Oceanogr. 14, 949–953 (1969).

Sebens K. The influence of colony morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus). J. Exp. Mar. Biol. Ecol. 165, 251–278 (1993).

Sorokin Y. I. Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust. J. Mar. Freshwater. Res. 42, 729–741 (1991).

Widdig A. & Schlichter D. Phytoplankton: a significant trophic source for soft corals? Helgoland marine research 55, 198–211 (2001).

Fabricius K. E., Benayahu Y. & Genin A. Herbivory in asymbiotic soft corals. Science-New York then Washington 90–90 (1995). PubMed

Fabricius K. E., Genin A. & Benayahu Y. Flow‐dependent herbivory and growth in zooxanthellae‐free soft corals. Limnol. Oceanogr. 40, 1290–1301 (1995).

Bachar A., Achituv Y., Pasternak Z. & Dubinsky Z. Autotrophy versus heterotrophy: The origin of carbon determines its fate in a symbiotic sea anemone. J. Exp. Mar. Biol. Ecol. 349, 295–298 (2007).

Seemann J. The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J. Exp. Mar. Biol. Ecol. 442, 88–95 (2013).

Carlier A. et al.. Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea) Inter-Research (2009).

Sabens K. P. & Johnson A. S. Effects of water movement on prey capture and distribution of reef corals. Hydrobiol. 226, 91–101 (1991).

Palardy J. E., Grottoli A. G. & Matthews K. A. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Progr. Ser. 300, 79–89 (2005).

Grottoli A. G., Rodrigues L. J. & Palardy J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006). PubMed

Leal M. C. et al.. Coral feeding on microalgae assessed with molecular trophic markers. Mol. Ecol. 23, 3870–3876 (2014). PubMed

Leal M. C., Nejstgaard J. C., Calado R., Thompson M. E. & Frischer M. E. Molecular assessment of heterotrophy and prey digestion in zooxanthellate cnidarians. Mol. Ecol. 23, 3838–3848 (2014). PubMed

Fabricius K., Yahel G. & Genin A. In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnol. Oceanogr. 43, 354–356 (1998).

Tsounis G., Rossi S., Laudien J., Bramanti L., Fernandez N., Gili J. M. & Arntz W. Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 149, 313–325 (2006).

Farrant P. A., Borowitzka M. A., Hinde R. & King R. J. Nutrition of the temperate Australian soft coral Capnella gaboensis. Mar. Biol. 95, 565–574 (1987).

Charpy L. Importance of photosynthetic of photosynthetic picoplankton in coral reef ecosystems. Vie et Milieu 55, 217–223 (2005).

Fabricius K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Poll. Bull. 50, 125–146 (1998). PubMed

Yahel G., Post A. F., Fabricius K., Marie D., Vaulot D. & Genin A. Phytoplankton distribution and grazing near coral reefs. Limnol and Oceanogr. 43, 551–563 (1998).

Coma R., Ribes M., Orejas C. & Gili J. M. Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18, 141–145 (1999).

Grover R., Maguer J. F., Allemand D. & Ferrier-Pagés C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).

Houlbrèque F., Tambuttè E., Allemand D. & Ferrier-Pagès C. Interaction between zooplankton feeding, photosynthesis and skeleton growth in the scleractinian coral Stylophora pistillata. J. Exp. Mar. Biol. Ecol. 207, 1461–1469 (2004). PubMed

Genin A., Monismith S. G., Reidenbach M. A., Yahel G. & Koseff J. R. Intense benthic grazing of phytoplankton in a coral reef. Limnol. Oceanogr. 54, 938–951 (2009).

Huettel M., Wild C. & Gonelli S. Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar. Ecol. Progr. 307, 69–84 (2006).

Hasle G. R. & Syvertsen E. E. Marine Diatoms. In: Identifying Marine Phytoplankton (ed. Tomas C. R.) 5–385 (Academic Press, San Diego 1997).

Miller W. I., Montgomery R. T. & Collier A. W. A taxonomic survey of the diatoms associated to Florida Keys coral reefs. Proceedings of the 3rd International Coral reef Symposium, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida, May 1977.

Yamashiro H., Mikame Y. & Suzuki H. Localized outbreak of attached diatoms on the coral Montipora due to low-temperature stress. Scie Rep. 2, 552 (2012). PubMed PMC

Romagnoli T. et al.. Microalgal communities epibiontic on the marine hydroid Eudendrium racemosum in the Ligurian Sea, during an annual cycle. Mar. Biol. 151, 537–552 (2007).

Aceret T. L., Coll J. C., Uchio Y. & Sammarco P. W. Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp. Biochem. Physiol. C. 120, 121–126 (1998). PubMed

Shih H. J. et al.. Cytotoxic and anti-inflammatory diterpenoids from the Dongsha Atoll soft coral Sinularia flexibilis. Tetrahedron 68, 244–249 (2012).

Maida M., Sammarco P. W. & Coll J. C. A diffusion chamber for assessing efficacy of natural anti-fouling defenses in marine organisms. J. Exp. Mar. Biol. Ecol. 337, 59–64 (2006).

Olivotto I. et al.. Advances in Breeding and Rearing Marine Ornamentals. J. World. Aquc. Soc. 42, 135–166 (2010).

Field C. B., Behrenfeld M. J., Randerson J. T. & Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240. (1998). PubMed

Armbrust E. V. et al.. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004). PubMed

Bowler C., Vardi A. & Allen A. E. Oceanographic and biogeochemical insights from diatom genomes. Mar. Sci. 2, 333–365 (2010). PubMed

Dyhrman S. T. et al.. The Transcriptome and Proteome of the Diatom Thalassiosira pseudonana Reveal a Diverse Phosphorus Stress Response. PlosOne 7, e33768 (2012). PubMed PMC

Montsant A. et al.. Identification and comparative genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana. J. Phycol. 43, 585–604 (2007).

Nunn B. L. et al.. Deciphering diatom biochemical pathways via whole-cell proteomics. Aquat. Ecol. Microb. 55, 241–253 (2009). PubMed PMC

Shi X., Gao W., Chao S. & Zhang W. Deirdre R. Meldrum Monitoring the Single-Cell Stress Response of the Diatom Thalassiosira pseudonana by Quantitative Real-Time Reverse Transcription-PCR. J. Appl. Environ. Microbiol. 79, 1850–1858 (2013). PubMed PMC

Fanesi A., Raven J. A. & Giordano M. Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant Cell Environ. 37, 512–519 (2014). PubMed

Von Stosch H. A. An amended terminology of the diatom girdle. Nova Hedwigia. 53, 1–35 (1975).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...