vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish?
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26965282
DOI
10.1007/s00427-016-0533-8
PII: 10.1007/s00427-016-0533-8
Knihovny.cz E-resources
- Keywords
- Gene regulatory network, Heat shock element, Midbrain-hindbrain boundary, fgf8, medaka, vox,
- MeSH
- Embryo, Nonmammalian metabolism MeSH
- Gene Regulatory Networks MeSH
- Homeodomain Proteins genetics metabolism MeSH
- Mesencephalon embryology metabolism MeSH
- Oryzias embryology genetics MeSH
- Rhombencephalon embryology metabolism MeSH
- Fish Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Homeodomain Proteins MeSH
- Fish Proteins MeSH
The midbrain-hindbrain boundary (MHB) is one of the key organizing centers of the vertebrate central nervous system (CNS). Its patterning is governed by a well-described gene regulatory network (GRN) involving several transcription factors, namely, pax, gbx, en, and otx, together with signaling molecules of the Wnt and Fgf families. Here, we describe the onset of these markers in Oryzias latipes (medaka) early brain development in comparison to previously known zebrafish expression patterns. Moreover, we show for the first time that vox, a member of the vent gene family, is expressed in the developing neural tube similarly to CNS markers. Overexpression of vox leads to profound changes in the gene expression patterns of individual components of MHB-specific GRN, most notably of fgf8, a crucial organizer molecule of MHB. Our data suggest that genes from the vent family, in addition to their crucial role in body axis formation, may play a role in regionalization of vertebrate CNS.
See more in PubMed
Mol Syst Biol. 2011 Oct 11;7:539 PubMed
Development. 1998 Aug;125(16):3063-74 PubMed
Curr Opin Neurobiol. 2000 Oct;10(5):599-611 PubMed
Mol Cell Biol. 2007 Jan;27(1):340-51 PubMed
Development. 2003 Dec;130(26):6611-23 PubMed
Annu Rev Neurosci. 1999;22:261-94 PubMed
Development. 1999 Sep;126(17):3769-79 PubMed
Mech Dev. 2004 Jul;121(7-8):605-18 PubMed
Dev Cell. 2004 Feb;6(2):167-81 PubMed
Curr Opin Neurobiol. 2001 Feb;11(1):34-42 PubMed
Development. 2005 Mar;132(6):1261-72 PubMed
Trends Neurosci. 2004 Dec;27(12):727-34 PubMed
Mech Dev. 2003 Aug;120(8):919-36 PubMed
Cell Mol Life Sci. 2013 Sep;70(18):3365-74 PubMed
Development. 2013 Mar;140(5):1090-9 PubMed
Neural Dev. 2009 Apr 02;4:12 PubMed
Brain Res Brain Res Rev. 2003 Oct;43(2):179-91 PubMed
Dev Dyn. 2004 Jul;230(3):494-508 PubMed
Nucleic Acids Res. 2015 Jan;43(Database issue):D682-9 PubMed
Cell. 1993 Dec 31;75(7):1417-30 PubMed
Dev Biol. 2000 Aug 15;224(2):275-85 PubMed
Nature. 1998 Feb 19;391(6669):788-92 PubMed
Development. 1998 Aug;125(16):3049-62 PubMed
Mech Dev. 1994 Dec;48(3):229-44 PubMed
Dev Biol. 2007 May 1;305(1):276-86 PubMed
Front Genet. 2015 Jul 02;6:228 PubMed
Dev Biol. 2004 Jul 15;271(2):416-30 PubMed
Nat Rev Neurosci. 2001 Feb;2(2):99-108 PubMed
Development. 2001 Jan;128(2):181-91 PubMed
Development. 1998 Jul;125(13):2381-95 PubMed
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12121-6 PubMed
Mech Dev. 2002 Oct;118(1-2):91-8 PubMed
Dev Biol. 2013 Oct 15;382(2):538-54 PubMed
Curr Opin Cell Biol. 2000 Dec;12(6):736-41 PubMed
Development. 2001 Jun;128(12):2407-20 PubMed