The characterization of four gene expression analysis in circulating tumor cells made by Multiplex-PCR from the AdnaTest kit on the lab-on-a-chip Agilent DNA 1000 platform

. 2016 ; 26 (1) : 103-13.

Jazyk angličtina Země Chorvatsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26981024

INTRODUCTION: Nowadays, on-a-chip capillary electrophoresis is a routine method for the detection of PCR fragments. The Agilent 2100 Bioanalyzer was one of the first commercial devices in this field. Our project was designed to study the characteristics of Agilent DNA 1000 kit in PCR fragment analysis as a part of circulating tumour cell (CTC) detection technique. Despite the common use of this kit a complex analysis of the results from a long-term project is still missing. MATERIALS AND METHODS: A commercially available Agilent DNA 1000 kit was used as a final step in the CTC detection (AdnaTest) for the determination of the presence of PCR fragments generated by Multiplex PCR. Data from 30 prostate cancer patients obtained during two years of research were analyzed to determine the trueness and precision of the PCR fragment size determination. Additional experiments were performed to demonstrate the precision (repeatability, reproducibility) and robustness of PCR fragment concentration determination. RESULTS: The trueness and precision of the size determination was below 3% and 2% respectively. The repeatability of the concentration determination was below 15%. The difference in concentration determination increases when Multiplex-PCR/storage step is added between the two measurements of one sample. CONCLUSIONS: The characteristics established in our study are in concordance with the manufacturer's specifications established for a ladder as a sample. However, the concentration determination may vary depending on chip preparation, sample storage and concentration. The 15% variation of concentration determination repeatability was shown to be partly proportional and can be suppressed by proper normalization.

Zobrazit více v PubMed

Nachamkin I, Panaro NJ, Li M, Ung H, Yuen PK, Kricka LJ, et al. Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of the Campylobacter jejuni flagellin gene. J Clin Microbiol. 2001;39:754–7. 10.1128/JCM.39.2.754-757.2001 PubMed DOI PMC

Chen L, Ren J. High-throughput DNA analysis by microchip electrophoresis. Comb Chem High Throughput Screen. 2004;7:29–43. 10.2174/138620704772884805 PubMed DOI

Fajardo V, González I, Dooley J, Garret S, Brown HM, García T, et al. Application of polymerase chain reaction-restriction fragment length polymorphism analysis and lab-on-a-chip capillary electrophoresis for the specific identification of game and domestic meats. J Sci Food Agric. 2009;89:843–7. 10.1002/jsfa.3522 DOI

Gottwald E, Müller O, Polten A. Semiquantitative reverse transcription-polymerase chain reaction with the Agilent 2100 Bioanalyzer. Electrophoresis. 2001;22:4016–22. 10.1002/1522-2683(200110)22:18<4016::AID-ELPS4016>3.0.CO;2-9 PubMed DOI

Nuchtavorn N, Smejkal P, Breadmore MC, Guijt RM, Doble P, Bek F, et al. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. J Chromatogr A. 2013;1286:216–21. 10.1016/j.chroma.2013.02.060 PubMed DOI

Funes-Huacca M, Correia de Almeida Regitano L, Mueller O, Carrilho E. Semiquantitative determination of Alicyclobacillus acidoterrestris in orange juice by reverse-transcriptase polymerase chain reaction and capillary electrophoresis - Laser induced fluourescence using microchip technology. Electrophoresis. 2004;25:3860–4. 10.1002/elps.200406105 PubMed DOI

Panaro NJ, Yuen PK, Sakazume T, Fortina P, Kricka LJ, Wilding P. Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer. Clin Chem. 2000;46:1851–3. PubMed

Jabasini M, Zhang L, Dang F, Xu F, Almofli MR, Ewis AA, et al. Analysis of DNA polymorphisms on the human Y-chromosome by microchip electrophoresis. Electrophoresis. 2002;23:1537–42. 10.1002/1522-2683(200205)23:10<1537::AID-ELPS1537>3.0.CO;2-E PubMed DOI

Ding L, Williams K, Ausserer W, Bousse L, Dubrow R. Analysis of plasmid samples on a microchip. Anal Biochem. 2003;316:92–102. 10.1016/S0003-2697(03)00037-X PubMed DOI

Chiappetta C, Anile M, Leopizzi M, Venuta F, Della Rocca C. Use of a new generation of capillary electrophoresis to quantify circulating free DNA in non-small cell lung cancer. Clin Chim Acta. 2013;425:93–6. 10.1016/j.cca.2013.07.014 PubMed DOI

An Q, Fillmore HL, Vouri M, Pilkington GJ. Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neuro-oncol. 2014;16:265–73. 10.1093/neuonc/not202 PubMed DOI PMC

Smejkal P, Breadmore MC, Guijt RM, Foret F, Bek F, Macka M. Analytical isotachophoresis of lactate in human serum using dry film photoresist microfluidic chips compatible with a commercially available field-deployable instrument platform. Anal Chim Acta. 2013;803:135–42. 10.1016/j.aca.2013.01.046 PubMed DOI

AdnaGen. AdnaTest ProstateCancerDetect manual. Available at: http://www.adnagen.com/m088v01_upload/140616_ProstateCancerDetect_en_IVD.pdf. Accessed Aug 7 2014.

AdnaGen. AdnaTest ProstateCancerSelect manual. Available at: http://www.adnagen.com/m088v01_upload/130116 ProstateCancerSelect_en_IVD1.pdf. Accessed August 7 2014.

Mueller O, Hahnenberger K, Dittmann M, Yee H, Dubrow R, Nagle R, et al. A microfluidic system for high-speed reproducible DNA sizing and quantitation. Electrophoresis. 2000;21:128–34. 10.1002/(SICI)1522-2683(20000101)21:1<128::AID-ELPS128>3.0.CO;2-M PubMed DOI

Mcbride M. Food Safety Applications Using the Agilent 2100 Bioanalyzer Agilent 2100 Bioanalyzer. 2009;1-18. Available at: http://www.chem.agilent.com/Library/slidepresentation/Public/Food Safety Applications Using the Agilent 2100 Bioanalyzer.pdf. Accessed February 18 2015.

Agilent Technologies. Agilent DNA 1000 Kit Guide. Available at: http://www.chem.agilent.com/Library/usermanuals/Public/G2938-90014_DNA1000Assay_KG.pdf. Accessed August 7 2014.

Agilent Technologies. Agilent 2100 Bioanalyzer Maintenance and Troubleshooting Guide. Available at: http://www.chem.agilent.com/Library/usermanuals/Public/G2946-90003_MandTguide.pdf. Accessed June 25 2014.

Dooley JJ, Sage HD, Clarke M-AL, Brown HM, Garrett SD. Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study. J Agric Food Chem. 2005;53:3348–57. 10.1021/jf047917s PubMed DOI

Agilent 2100 Bioanalyzer 2100 Expert User’s Guide. Available at: http://gcf.pbrc.edu/docs/Agilent/Agilent%20Manual.pdf. Accessed September 4 2014.

Agilent Technologies. Application note High resolution DNA analysis with the DNA 500 and DNA 1000 LabChip® kits. Available at: http://www.chem.agilent.com/Library/applications/59883041.pdf. Accessed September 4 2014.

Alberice JV, Funes-Huacca ME, Carrilho E. A Comparison of Plating and Reverse Transcriptase Polymerase Chain Reaction Followed by Microchip Electrophoresis for the Inactivation of Alicyclobacillus acidoterrestris Using Saponin. J Braz Chem Soc. 2013;25:91–7.

Aboud MJ, Gassmann M, McCord BR. The development of mini pentameric STR loci for rapid analysis of forensic DNA samples on a microfluidic system. Electrophoresis. 2010;31:2672–9. 10.1002/elps.201000032 PubMed DOI

Kishawi I. The Lab-on-a-Chip Approach Increasing quality and speed. Available at: http://www.chem.agilent.com/library/posters/public/bioanalyzer.pdf. Accessed February 24 2015.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...