Hydroponic root mats for wastewater treatment-a review
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
27164889
DOI
10.1007/s11356-016-6801-3
PII: 10.1007/s11356-016-6801-3
Knihovny.cz E-resources
- Keywords
- Constructed wetland, Floating hydroponic root mats, Hydroponic root mat filters, Wastewater treatment,
- MeSH
- Biodegradation, Environmental MeSH
- Hydroponics * MeSH
- Plant Roots * MeSH
- Wetlands MeSH
- Waste Disposal, Fluid methods MeSH
- Wastewater * MeSH
- Groundwater MeSH
- Rivers MeSH
- Ponds MeSH
- Water Pollution MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Waste Water * MeSH
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.
College of Resources and Environment Huazhong Agricultural University Shizishan 1 430070 Wuhan China
See more in PubMed
Water Res. 2007 Jul;41(14):3152-8 PubMed
J Environ Sci (China). 2014 Apr 1;26(4):726-36 PubMed
Microbes Environ. 2012;27(2):149-57 PubMed
Water Environ Res. 2011 May;83(5):427-39 PubMed
Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 PubMed
Environ Sci Pollut Res Int. 2015 Feb;22(4):2455-66 PubMed
Water Sci Technol. 2009;60(11):2851-9 PubMed
Chemosphere. 2014 Dec;117:178-84 PubMed
Environ Sci Technol. 2011 Jan 1;45(1):61-9 PubMed
Water Sci Technol. 2005;51(9):291-8 PubMed
J Environ Qual. 2003 Sep-Oct;32(5):1583-90 PubMed
Chemosphere. 2006 Jan;62(2):247-54 PubMed
J Environ Manage. 2014 Aug 1;141:116-31 PubMed
Microbiol Res. 2011 Sep 20;166(6):468-74 PubMed
Environ Manage. 2002 Mar;29(3):385-94 PubMed
Environ Monit Assess. 2009 May;152(1-4):149-53 PubMed
Front Plant Sci. 2013 Jul 22;4:268 PubMed
Water Sci Technol. 2011;64(10):2089-95 PubMed
Water Sci Technol. 2013;68(5):1144-50 PubMed
Water Sci Technol. 2013;68(7):1566-73 PubMed
Environ Sci Technol. 2011 Oct 1;45(19):8467-74 PubMed
Water Res. 2011 Jul;45(13):3941-50 PubMed
Bioresour Technol. 2014 Apr;157:316-26 PubMed
Environ Sci Technol. 2002 May 1;36(9):2101-6 PubMed
Chemosphere. 2003 Jan;50(1):121-9 PubMed
Water Sci Technol. 2007;56(3):271-6 PubMed
Water Res. 2012 Apr 15;46(6):1625-40 PubMed
Water Res. 2013 Feb 1;47(2):769-80 PubMed
Chemosphere. 2013 Jan;90(4):1317-32 PubMed
Sci Total Environ. 2014 Nov 15;499:384-93 PubMed
Water Res. 2003 Mar;37(6):1401-5 PubMed
Water Res. 2002 Aug;36(14):3489-96 PubMed
Water Res. 2013 Apr 1;47(5):1711-25 PubMed
Environ Sci Pollut Res Int. 2015 Mar;22(5):3886-94 PubMed
J Hazard Mater. 2012 Mar 30;209-210:510-5 PubMed
Water Res. 2014 Jan 1;48:430-42 PubMed
Water Res. 2014 Mar 1;50:147-59 PubMed
Chemosphere. 2010 Oct;81(5):651-7 PubMed
Bioresour Technol. 2008 Nov;99(17):8049-53 PubMed
Water Sci Technol. 2013;68(7):1657-64 PubMed
Water Res. 2009 Mar;43(5):1247-56 PubMed