Genetic diversity of two Daphnia-infecting microsporidian parasites, based on sequence variation in the internal transcribed spacer region
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27206473
PubMed Central
PMC4875737
DOI
10.1186/s13071-016-1584-4
PII: 10.1186/s13071-016-1584-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cryptic sex, Genetic diversity, Internal transcribed spacer, Microsporidia, Recombination,
- MeSH
- Daphnia mikrobiologie MeSH
- fylogeografie MeSH
- genetická variace * MeSH
- haplotypy MeSH
- intergenová DNA * MeSH
- metagenomika MeSH
- Microsporidia genetika MeSH
- rekombinace genetická MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- intergenová DNA * MeSH
BACKGROUND: Microsporidia are spore-forming obligate intracellular parasites that include both emerging pathogens and economically important disease agents. However, little is known about the genetic diversity of microsporidia. Here, we investigated patterns of geographic population structure, intraspecific genetic variation, and recombination in two microsporidian taxa that commonly infect cladocerans of the Daphnia longispina complex in central Europe. Taken together, this information helps elucidate the reproductive mode and life-cycles of these parasite species. METHODS: Microsporidia-infected Daphnia were sampled from seven drinking water reservoirs in the Czech Republic. Two microsporidia species (Berwaldia schaefernai and microsporidium lineage MIC1) were sequenced at the internal transcribed spacer (ITS) region, using the 454 pyrosequencing platform. Geographical structure analyses were performed applying Fisher's exact tests, analyses of molecular variance, and permutational MANOVA. To evaluate the genetic diversity of the ITS region, the number of polymorphic sites and Tajima's and Watterson's estimators of theta were calculated. Tajima's D was also used to determine if the ITS in these taxa evolved neutrally. Finally, neighbour similarity score and pairwise homology index tests were performed to detect recombination events. RESULTS: While there was little variation among Berwaldia parasite strains infecting different host populations, the among-population genetic variation of MIC1 was significant. Likewise, ITS genetic diversity was lower in Berwaldia than in MIC1. Recombination signals were detected only in Berwaldia. CONCLUSION: Genetic tests showed that parasite populations could have expanded recently after a bottleneck or that the ITS could be under negative selection in both microsporidia species. Recombination analyses might indicate cryptic sex in Berwaldia and pure asexuality in MIC1. The differences observed between the two microsporidian species present an exciting opportunity to study the genetic basis of microsporidia-Daphnia coevolution in natural populations, and to better understand reproduction in these parasites.
Berlin Centre for Genomics in Biodiversity Research Königin Luise Straße 6 8 14195 Berlin Germany
School of Life Sciences École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
Zobrazit více v PubMed
Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 2012;10:47. doi: 10.1186/1741-7007-10-47. PubMed DOI PMC
Vávra J, Lukeš J. Microsporidia and “The Art of Living Together.”. Adv Parasitol. 2013;82:253–320. doi: 10.1016/B978-0-12-407706-5.00004-6. PubMed DOI
Stentiford GD, Feist SW, Stone DM, Bateman KS, Dunn AM. Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol. 2013;29:567–78. doi: 10.1016/j.pt.2013.08.005. PubMed DOI
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94. doi: 10.1038/nature10947. PubMed DOI PMC
Didier ES, Weiss LM. Microsporidiosis: current status. Curr Opin Infect Dis. 2006;19:485–92. doi: 10.1097/01.qco.0000244055.46382.23. PubMed DOI PMC
Ishihara R. The life cycle of Nosema bombycis as revealed in tissue culture cells of Bombyx mori. J Invertebr Pathol. 1969;14:316–20. doi: 10.1016/0022-2011(69)90157-8. PubMed DOI
Ma Z, Li C, Pan G, Li Z, Han B, Xu J, Lan X, Chen J, Yang D, Chen Q, Sang Q, Ji X, Li T, Long M, Zhou Z. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS One. 2013;8:e84137. doi: 10.1371/journal.pone.0084137. PubMed DOI PMC
Higes M, Meana A, Bartolomé C, Botías C, Martín-Hernández R. Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environ Microbiol Rep. 2013;5:17–29. doi: 10.1111/1758-2229.12024. PubMed DOI
Simões RA, Feliciano JR, Solter LF, Delalibera I. Impacts of Nosema sp. (Microsporidia: Nosematidae) on the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae) J Invertebr Pathol. 2015;129:7–12. doi: 10.1016/j.jip.2015.05.006. PubMed DOI
Desjardins CA, Sanscrainte ND, Goldberg JM, Heiman D, Young S, Zeng Q, Madhani HD, Becnel JJ, Cuomo CA. Contrasting host–pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes. Nat Commun. 2015;6:7121. doi: 10.1038/ncomms8121. PubMed DOI PMC
Pelin A, Selman M, Aris-Brosou S, Farinelli L, Corradi N. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environ Microbiol. 2015;17:4443–58. doi: 10.1111/1462-2920.12883. PubMed DOI
Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ, Young S, Zeng Q, Troemel ER. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res. 2012;22:2478–88. doi: 10.1101/gr.142802.112. PubMed DOI PMC
Pombert JF, Xu J, Smith DR, Heiman D, Young S, Cuomo CA, Weiss LM, Keeling PJ. Complete genome sequences from three genetically distinct strains reveal high intraspecies genetic diversity in the microsporidian Encephalitozoon cuniculi. Eukaryot Cell. 2013;12:503–11. doi: 10.1128/EC.00312-12. PubMed DOI PMC
Haag KL, Traunecker E, Ebert D. Single-nucleotide polymorphisms of two closely related microsporidian parasites suggest a clonal population expansion after the last glaciation. Mol Ecol. 2013;22:314–26. doi: 10.1111/mec.12126. PubMed DOI
Gómez-Moracho T, Maside X, Martín-Hernández R, Higes M, Bartolomé C. High levels of genetic diversity in Nosema ceranae within Apis mellifera colonies. Parasitology. 2014;141:475–81. doi: 10.1017/S0031182013001790. PubMed DOI
Gómez-Moracho T, Bartolomé C, Bello X, Martín-Hernández R, Higes M, Maside X. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. Infect Genet Evol. 2015;31:87–94. doi: 10.1016/j.meegid.2015.01.002. PubMed DOI
Maside X, Gómez-Moracho T, Jara L, Martín-Hernández R, De la Rúa P, Higes M, Bartolomé C. Population genetics of Nosema apis and Nosema ceranae: one host (Apis mellifera) and two different histories. PLoS One. 2015;10:e0145609. doi: 10.1371/journal.pone.0145609. PubMed DOI PMC
Gresoviac SJ, Khattra JS, Nadler SA, Kent ML, Devlin RH, Vivares CP, Fuente E, Hedrick RP. Comparison of small subunit ribosomal RNA gene and internal transcribed spacer sequences among isolates of the intranuclear microsporidian Nucleospora salmonis. J Eukaryot Microbiol. 2000;47:379–87. doi: 10.1111/j.1550-7408.2000.tb00064.x. PubMed DOI
Haro M, Del Águila C, Fenoy S, Henriques-Gil N. Intraspecies genotype variability of the microsporidian parasite Encephalitozoon hellem. J Clin Microbiol. 2003;41:4166–71. doi: 10.1128/JCM.41.9.4166-4171.2003. PubMed DOI PMC
Santín M, Fayer R. Enterocytozoon bieneusi genotype nomenclature based on the internal transcribed spacer sequence: a consensus. J Eukaryot Microbiol. 2009;56:34–8. doi: 10.1111/j.1550-7408.2008.00380.x. PubMed DOI
Selman M, Sak B, Kváč M, Farinelli L, Weiss LM, Corradi N. Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi. Eukaryot Cell. 2013;12:496–502. doi: 10.1128/EC.00307-12. PubMed DOI PMC
Liguory O, Fournier S, Sarfati C, Derouin F, Molina J-MM. Genetic homology among thirteen Encephalitozoon intestinalis isolates obtained from human immunodeficiency virus-infected patients with intestinal microsporidiosis. J Clin Microbiol. 2000;38:2389–91. PubMed PMC
Henriques-Gil N, Haro M, Izquierdo F, Fenoy S, del Águilat C. Phylogenetic approach to the variability of the microsporidian Enterocytozoon bieneusi and its implications for inter- and intrahost transmission. Appl Environ Microbiol. 2010;76:3333–42. doi: 10.1128/AEM.03026-09. PubMed DOI PMC
Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for “macroscopic phenomena” such as virulence. Philos Trans R Soc B Biol Sci. 2009;364:85–98. doi: 10.1098/rstb.2008.0157. PubMed DOI PMC
Frank SA. Models of parasite virulence. Q Rev Biol. 1996;71:37–78. doi: 10.1086/419267. PubMed DOI
Ebert D. Host-parasite coevolution: Insights from the Daphnia-parasite model system. Curr Opin Microbiol. 2008;11:290–301. doi: 10.1016/j.mib.2008.05.012. PubMed DOI
Stollewerk A. The water flea PubMed PMC
Refardt D, Canning EU, Mathis A, Cheney SA, Lafranchi-Tristem NJ, Ebert D. Small subunit ribosomal DNA phylogeny of microsporidia that infect Daphnia (Crustacea: Cladocera) Parasitology. 2002;124:381–9. doi: 10.1017/S0031182001001305. PubMed DOI
Refardt D, Decaestecker E, Johnson PTJ, Vávra J. Morphology, molecular phylogeny, and ecology of Binucleata daphniae n. g., n. sp. (Fungi: Microsporidia), a parasite of Daphnia magna Straus, 1820 (Crustacea: Branchiopoda) J Eukaryot Microbiol. 2008;55:393–408. doi: 10.1111/j.1550-7408.2008.00341.x. PubMed DOI
Weigl S, Körner H, Petrusek A, Seda J, Wolinska J. Natural distribution and co-infection patterns of microsporidia parasites in the Daphnia longispina complex. Parasitology. 2012;139:870–80. doi: 10.1017/S0031182012000303. PubMed DOI
Wolinska J, Giessler S, Koerner H. Molecular identification and hidden diversity of novel Daphnia parasites from European lakes. Appl Environ Microbiol. 2009;75:7051–9. doi: 10.1128/AEM.01306-09. PubMed DOI PMC
Vávra J, Larsson JIR. Berwaldia schaefernai (Jírovec, 1937) comb. n. (protozoa, microsporida), fine structure, life cycle, and relationship to Berwaldia singularis Larsson, 1981. Eur J Protistol. 1937;1994(30):45–54.
Vossbrinck CR, Andreadis TG, Vavra J, Becnel JJ. Molecular phylogeny and evolution of mosquito parasitic microsporidia (Microsporidia: Amblyosporidae) J Eukaryot Microbiol. 2004;51:88–95. doi: 10.1111/j.1550-7408.2004.tb00167.x. PubMed DOI
Vávra J, Hyliš M, Oborník M, Vossbrinck CR. Microsporidia in aquatic microcrustacea: The copepod microsporidium Marssoniella elegans Lemmermann, 1900 revisited. Folia Parasitol (Praha) 2005;52:163–72. doi: 10.14411/fp.2005.021. PubMed DOI
Simakova AV, Pankova TF, Tokarev YS, Issi IV. Senoma gen. n., a new genus of microsporidia, with the type species Senoma globulifera comb. n.(syn. Issia globulifera Issi et Pankova 1983) from the malaria mosquito Anopheles messeae Fall. Protistology. 2005;4:135–44.
Dunn AM, Hogg JC, Hatcher MJ. Transmission and burden and the impact of temperature on two species of vertically transmitted microsporidia. Int J Parasitol. 2006;36:409–14. doi: 10.1016/j.ijpara.2005.11.005. PubMed DOI
Martín-Hernández R, Meana A, García-Palencia P, Marín P, Botías C, Garrido-Bailón E, Barrios L, Higes M. Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol. 2009;75:2554–7. doi: 10.1128/AEM.02908-08. PubMed DOI PMC
Wolinska J, Spaak P, Koerner H, Petrusek A, Seda J, Giessler S. Transmission mode affects the population genetic structure of Daphnia parasites. J Evol Biol. 2011;24:265–73. doi: 10.1111/j.1420-9101.2010.02163.x. PubMed DOI
Seda J, Petrusek A, Machacek J, Smilauer P. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. J Plankton Res. 2007;29:619–28. doi: 10.1093/plankt/fbm044. DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
González-Tortuero E, Rusek J, Petrusek A, Gießler S, Lyras D, Grath S, Castro-Monzón F, Wolinska J. The quantification of representative sequences pipeline for amplicon sequencing: case study on within-population ITS1 sequence variation in a microparasite infecting Daphnia. Mol Ecol Resour. 2015;15:1385–95. doi: 10.1111/1755-0998.12396. PubMed DOI
Wirawan A, Harris RS, Liu Y, Schmidt B, Schröder J. HECTOR: a parallel multistage homopolymer spectrum based error corrector for 454 sequencing data. BMC Bioinformatics. 2014;15:131. doi: 10.1186/1471-2105-15-131. PubMed DOI PMC
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Giessler S, Wolinska J. Capturing the population structure of microparasites: Using ITS-sequence data and a pooled DNA approach. Mol Ecol Resour. 2013;13:918–28. doi: 10.1111/1755-0998.12144. PubMed DOI
Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation Genetics. 1992;132:619–33. PubMed PMC
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna Austria 2015:{ISBN} 3–900051–07–0.
Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. vegan: community ecology package. 2015.
Venables WN, Ripley BD. Modern Applied Statistics With S. 4. New York: Springer; 2003.
Wheeler TJ, Kececioglu JD. Bioinformatics. 2007. Multiple alignment by aligning alignments; pp. i559–68. PubMed
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Simonsen M, Mailund T, Pedersen CS. Rapid Neighbour-Joining. In: Crandall KA, Lagergren J, editors. Algorithms in Bioinformatics. Berlin Heidelberg: Springer; 2008. pp. 113–22.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772–2. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008;57:758–71. doi: 10.1080/10635150802429642. PubMed DOI
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? J Comput Biol. 2010;17:337–54. doi: 10.1089/cmb.2009.0179. PubMed DOI
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82. doi: 10.1038/nprot.2007.324. PubMed DOI PMC
Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105:437–60. PubMed PMC
Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–76. doi: 10.1016/0040-5809(75)90020-9. PubMed DOI
Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol. 2014;31:1929–36. doi: 10.1093/molbev/msu136. PubMed DOI PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95. PubMed PMC
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Städler T, Haubold B, Merino C, Stephan W, Pfaffelhuber P. The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics. 2009;182:205–16. doi: 10.1534/genetics.108.094904. PubMed DOI PMC
Jakobsen IB, Easteal S. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Comput Appl Biosci. 1996;12:291–5. PubMed
Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172:2665–81. doi: 10.1534/genetics.105.048975. PubMed DOI PMC
Fitch WM: Toward finding the tree of maximum parsimony. Proc. 8th Int. Conf. Numer. Taxon. 1975, 189–230.
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985;111:147–64. PubMed PMC
Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26:2462–3. doi: 10.1093/bioinformatics/btq467. PubMed DOI PMC
Choi Y, Lee Y, Cho KS, Lee S, Russell J, Choi J, Jeong G. Chimerical nature of the ribosomal RNA gene of a Nosema species. J Invertebr Pathol. 2011;107:86–9. doi: 10.1016/j.jip.2011.02.005. PubMed DOI
Nadler SA. Microevolution and the genetic structure of parasite populations. J Parasitol. 1995;81:395–403. doi: 10.2307/3283821. PubMed DOI
Huyse T, Poulin R, Théron A. Speciation in parasites: a population genetics approach. Trends Parasitol. 2005;21:469–75. doi: 10.1016/j.pt.2005.08.009. PubMed DOI
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A. 2012;109:6241–6. doi: 10.1073/pnas.1117018109. PubMed DOI PMC
Ironside JE. Diversity and recombination of dispersed ribosomal DNA and protein coding genes in Microsporidia. PLoS One. 2013;8:e55878. doi: 10.1371/journal.pone.0055878. PubMed DOI PMC
Peyretaillade E, Peyret P, Metenier G, Vivares CP, Prensier G: The identification of rRNA maturation sites in the microsporidian PubMed
Huang W-F, Tsai S-J, Lo C-F, Soichi Y, Wang C-H. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genet Biol. 2004;41:473–81. doi: 10.1016/j.fgb.2003.12.005. PubMed DOI
Tsai S-J, Huang W-F, Wang C-H. Complete sequence and gene organization of the Nosema spodopterae rRNA gene. J Eukaryot Microbiol. 2005;52:52–4. doi: 10.1111/j.1550-7408.2005.3291rr.x. PubMed DOI
Wang L-L, Chen K-P, Zhang Z, Yao Q, Gao G-T, Zhao Y. Phylogenetic analysis of Nosema antheraeae (Microsporidia) isolated from Chinese oak silkworm, Antheraea pernyi. J Eukaryot Microbiol. 2006;53:310–3. doi: 10.1111/j.1550-7408.2006.00106.x. PubMed DOI
Iiyama K, Chieda Y, Yasunaga-Aoki C, Hayasaka S, Shimizu S. Analyses of the ribosomal DNA region in Nosema bombycis NIS 001. J Eukaryot Microbiol. 2004;51:598–604. doi: 10.1111/j.1550-7408.2004.tb00592.x. PubMed DOI
Ironside JE. Multiple losses of sex within a single genus of Microsporidia. BMC Evol Biol. 2007;7:48. doi: 10.1186/1471-2148-7-48. PubMed DOI PMC
Krebes L, Zeidler L, Frankowski J, Bastrop R. (Cryptic) sex in the microsporidian Nosema granulosis - Evidence from parasite rDNA and host mitochondrial DNA. Infect Genet Evol. 2014;21:259–68. doi: 10.1016/j.meegid.2013.11.007. PubMed DOI
O’Mahony EM, Tay WT, Paxton RJ. Multiple rRNA variants in a single spore of the microsporidian Nosema bombi. J Eukaryot Microbiol. 2007;54:103–9. doi: 10.1111/j.1550-7408.2006.00232.x. PubMed DOI
Li W, Cama V, Feng Y, Gilman RH, Bern C, Zhang X, Xiao L. Population genetic analysis of Enterocytozoon bieneusi in humans. Int J Parasitol. 2012;42:287–93. doi: 10.1016/j.ijpara.2012.01.003. PubMed DOI
Li W, Cama V, Akinbo FO, Ganguly S, Kiulia NM, Zhang X, Xiao L. Multilocus sequence typing of Enterocytozoon bieneusi: Lack of geographic segregation and existence of genetically isolated sub-populations. Infect Genet Evol. 2013;14:111–9. doi: 10.1016/j.meegid.2012.11.021. PubMed DOI
Tellier A, Lemaire C. Coalescence 2.0: a multiple branching of recent theoretical developments and their applications. Mol Ecol. 2014;23:2637–52. doi: 10.1111/mec.12755. PubMed DOI
Thornton K. Recombination and the properties of Tajima’s D in the context of approximate-likelihood calculation. Genetics. 2005;171:2143–8. doi: 10.1534/genetics.105.043786. PubMed DOI PMC
Wilkinson TJ, Rock J, Whiteley NM, Ovcharenko MO, Ironside JE. Genetic diversity of the feminising microsporidian parasite Dictyocoela: New insights into host-specificity, sex and phylogeography. Int J Parasitol. 2011;41:959–66. doi: 10.1016/j.ijpara.2011.04.002. PubMed DOI
Lee SC, Heitman J, Ironside JE: Sex and the Microsporidia. In: Microsporidia: Pathogens of Opportunity. Edited by Weiss LM, Becnel JJ. Chichester, UK: John Wiley & Sons, Inc.; 2014:231–243.
Becnel JJ, Sprague V, Fukuda T, Hazard EI. Development of Edhazardia aedis (Kudo, 1930) n. g., n. comb. (Microsporida: Amblyosporidae) in the mosquito Aedes aegypti (L.) (Diptera: Culicidae) J Protozool. 1989;36:119–30. doi: 10.1111/j.1550-7408.1989.tb01057.x. PubMed DOI
Diarra K, Toguebaye BS. On the development cycle and ultrastructure of Vavraia culicis Weiser, 1947 (microsporida, pleistophoridae) with comments on the taxonomy of the genus Vavraia Weiser, 1977. Eur J Protistol. 1947;1991(27):134–40. PubMed