Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
27456224
PubMed Central
PMC4960562
DOI
10.1038/srep30287
PII: srep30287
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- Persea virologie MeSH
- replikace viru genetika MeSH
- RNA virová chemie genetika MeSH
- termodynamika MeSH
- viroidy chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA virová MeSH
In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain.
IBS CEA Grenoble F 38044 France
IBS Univ Grenoble Alpes Grenoble F 38044 France
Institut de Biologie Structurale CNRS Grenoble F 38044 France
Zobrazit více v PubMed
Diener T. O. The viroid: biological oddity or evolutionary fossil? Advances in virus research 57, 137–184 (2001). PubMed
Symons R. H. et al.. Self-Cleavage of RNA in the Replication of Viroids and Virusoids. J Cell Sci. 1987, 303–318 (1987). PubMed
Hernandez C., Daros J. A., Elena S. F., Moya A. & Flores R. The Strands of Both Polarities of a Small Circular Rna From Carnation Self-Cleave Invitro Through Alternative Double-Hammerhead and Single-Hammerhead Structures. Nucleic Acids Research 20, 6323–6329 (1992). PubMed PMC
Hutchins C. J., Rathjen P. D., Forster A. C. & Symons R. H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research 14, 3627–3640 (1986). PubMed PMC
Daros J. A., Marcos J. F., Hernandez C. & Flores R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences of the United States of America 91, 12813–12817 (1994). PubMed PMC
Hui-Bon-Hoa G., Kaddour H., Vergne J., Kruglik S. G. & Maurel M.-C. Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage. BMC Biophysics 7, 1–15 (2014). PubMed PMC
Hutchins C. J. et al.. Comparison of Multimeric Plus and Minus Forms of Viroids and Virusoids. Plant Molecular Biology 4, 293–304 (1985). PubMed
Delan-Forino C. et al.. Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands. Viruses 6, 489–506 (2014). PubMed PMC
Delan-Forino C., Maurel M.-C. & Torchet C. Replication of Avocado Sunblotch Viroid in the Yeast Saccharomyces cerevisiae. Journal of virology 85, 3229–3238 (2011). PubMed PMC
Svergun D. I., Koch M. H. J., Timmins P. A. & May R. P. Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules (Oxford University Press, 2013).
Jacrot B. & Zaccai G. Determination of molecular weight by neutron scattering. Biopolymers 20, 2413–2426 (1981).
Hull R. Plant Virology (2013).
Takagi Y. & Taira K. Temperature-Dependent Change in the Rate-Determining Step in a Reaction Catalyzed by a Hammerhead Ribozyme. FEBS letters 361, 273–276 (1995). PubMed
El-Murr N. et al.. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. Die Naturwissenschaften 99, 731–738 (2012). PubMed
Penedo J. C., Wilson T. J., Jayasena S. D., Khvorova A. & Lilley D. M. J. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA (New York, NY) 10, 880–888 (2004). PubMed PMC
Flores R., Daros J. A. & Hernandez C. Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in virus research 55, 271–323 (2000). PubMed PMC
McDowell S. E., Jun J. M. & Walter N. G. Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations. RNA (New York, NY) 16, 2414–2426 (2010). PubMed PMC
O’Rourke S. M., Estell W. & Scott W. G. Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity. Journal of Molecular Biology 427, 2340–2347 (2015). PubMed PMC
Mir A. et al.. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction. Biochemistry 54, 6369–6381 (2015). PubMed PMC
Martick M. & Scott W. G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006). PubMed PMC
Martick M., Lee T.-S., York D. M. & Scott W. G. Solvent structure and hammerhead ribozyme catalysis. Chemistry & Biology 15, 332–342 (2008). PubMed PMC
Busch A., Richter A. S. & Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics (Oxford, England) 24, 2849–2856 (2008). PubMed PMC
Lai D. & Meyer I. M. A comprehensive comparison of general RNA-RNA interaction prediction methods. Nucleic Acids Research gkv1477 (2015). PubMed PMC
Sun X., Li J. M. & Wartell R. M. Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA (New York, NY) 13, 2277–2286 (2007). PubMed PMC
Forster A. C., Davies C., Sheldon C. C., Jeffries A. C. & Symons R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265–267 (1988). PubMed
Davies C., Sheldon C. C. & Symons R. H. Alternative hammerhead structures in the self-cleavage of avocado sunblotch viroid RNAs. Nucleic Acids Research 19, 1893–1898 (1991). PubMed PMC
Porod G., Glatter O. & Kratky O. Small-Angle X-ray scattering: Section I. The Principles of diffraction. General theory (1982).
Lorenz R. et al.. ViennaRNA Package 2.0. Algorithms for molecular biology: AMB 6, 26 (2011). PubMed PMC
Tama F., Feig M., Liu J., Brooks C. L. III & Taylor K. A. The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function. Journal of Molecular Biology 345, 837–854 (2005). PubMed
Johnson J. E., Reyes F. E., Polaski J. T. & Batey R. T. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492, 133–137 (2012). PubMed PMC
Mayaan E., Moser A., MacKerell A. D. & York D. M. CHARMM force field parameters for simulation of reactive intermediates in native and thio-substituted ribozymes. Journal of Computational Chemistry 28, 495–507 (2007). PubMed PMC
Leclerc F. & Karplus M. MCSS-based predictions of RNA binding sites. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 101, 131–137 (1999).
Lee J. et al.. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of chemical theory and computation 12, 405–413 (2016). PubMed PMC
Phillips J. C. et al.. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 1781–1802 (2005). PubMed PMC