Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study

. 2016 Jul 26 ; 6 () : 30287. [epub] 20160726

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27456224

In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain.

Zobrazit více v PubMed

Diener T. O. The viroid: biological oddity or evolutionary fossil? Advances in virus research 57, 137–184 (2001). PubMed

Symons R. H. et al.. Self-Cleavage of RNA in the Replication of Viroids and Virusoids. J Cell Sci. 1987, 303–318 (1987). PubMed

Hernandez C., Daros J. A., Elena S. F., Moya A. & Flores R. The Strands of Both Polarities of a Small Circular Rna From Carnation Self-Cleave Invitro Through Alternative Double-Hammerhead and Single-Hammerhead Structures. Nucleic Acids Research 20, 6323–6329 (1992). PubMed PMC

Hutchins C. J., Rathjen P. D., Forster A. C. & Symons R. H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research 14, 3627–3640 (1986). PubMed PMC

Daros J. A., Marcos J. F., Hernandez C. & Flores R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences of the United States of America 91, 12813–12817 (1994). PubMed PMC

Hui-Bon-Hoa G., Kaddour H., Vergne J., Kruglik S. G. & Maurel M.-C. Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage. BMC Biophysics 7, 1–15 (2014). PubMed PMC

Hutchins C. J. et al.. Comparison of Multimeric Plus and Minus Forms of Viroids and Virusoids. Plant Molecular Biology 4, 293–304 (1985). PubMed

Delan-Forino C. et al.. Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands. Viruses 6, 489–506 (2014). PubMed PMC

Delan-Forino C., Maurel M.-C. & Torchet C. Replication of Avocado Sunblotch Viroid in the Yeast Saccharomyces cerevisiae. Journal of virology 85, 3229–3238 (2011). PubMed PMC

Svergun D. I., Koch M. H. J., Timmins P. A. & May R. P. Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules (Oxford University Press, 2013).

Jacrot B. & Zaccai G. Determination of molecular weight by neutron scattering. Biopolymers 20, 2413–2426 (1981).

Hull R. Plant Virology (2013).

Takagi Y. & Taira K. Temperature-Dependent Change in the Rate-Determining Step in a Reaction Catalyzed by a Hammerhead Ribozyme. FEBS letters 361, 273–276 (1995). PubMed

El-Murr N. et al.. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. Die Naturwissenschaften 99, 731–738 (2012). PubMed

Penedo J. C., Wilson T. J., Jayasena S. D., Khvorova A. & Lilley D. M. J. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA (New York, NY) 10, 880–888 (2004). PubMed PMC

Flores R., Daros J. A. & Hernandez C. Avsunviroidae family: Viroids containing hammerhead ribozymes. Advances in virus research 55, 271–323 (2000). PubMed PMC

McDowell S. E., Jun J. M. & Walter N. G. Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations. RNA (New York, NY) 16, 2414–2426 (2010). PubMed PMC

O’Rourke S. M., Estell W. & Scott W. G. Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity. Journal of Molecular Biology 427, 2340–2347 (2015). PubMed PMC

Mir A. et al.. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction. Biochemistry 54, 6369–6381 (2015). PubMed PMC

Martick M. & Scott W. G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006). PubMed PMC

Martick M., Lee T.-S., York D. M. & Scott W. G. Solvent structure and hammerhead ribozyme catalysis. Chemistry & Biology 15, 332–342 (2008). PubMed PMC

Busch A., Richter A. S. & Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics (Oxford, England) 24, 2849–2856 (2008). PubMed PMC

Lai D. & Meyer I. M. A comprehensive comparison of general RNA-RNA interaction prediction methods. Nucleic Acids Research gkv1477 (2015). PubMed PMC

Sun X., Li J. M. & Wartell R. M. Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA (New York, NY) 13, 2277–2286 (2007). PubMed PMC

Forster A. C., Davies C., Sheldon C. C., Jeffries A. C. & Symons R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265–267 (1988). PubMed

Davies C., Sheldon C. C. & Symons R. H. Alternative hammerhead structures in the self-cleavage of avocado sunblotch viroid RNAs. Nucleic Acids Research 19, 1893–1898 (1991). PubMed PMC

Porod G., Glatter O. & Kratky O. Small-Angle X-ray scattering: Section I. The Principles of diffraction. General theory (1982).

Lorenz R. et al.. ViennaRNA Package 2.0. Algorithms for molecular biology: AMB 6, 26 (2011). PubMed PMC

Tama F., Feig M., Liu J., Brooks C. L. III & Taylor K. A. The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function. Journal of Molecular Biology 345, 837–854 (2005). PubMed

Johnson J. E., Reyes F. E., Polaski J. T. & Batey R. T. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492, 133–137 (2012). PubMed PMC

Mayaan E., Moser A., MacKerell A. D. & York D. M. CHARMM force field parameters for simulation of reactive intermediates in native and thio-substituted ribozymes. Journal of Computational Chemistry 28, 495–507 (2007). PubMed PMC

Leclerc F. & Karplus M. MCSS-based predictions of RNA binding sites. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 101, 131–137 (1999).

Lee J. et al.. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of chemical theory and computation 12, 405–413 (2016). PubMed PMC

Phillips J. C. et al.. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 1781–1802 (2005). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...