Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

. 2016 Sep 14 ; 6 () : 33046. [epub] 20160914

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27623951

Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.

Zobrazit více v PubMed

Wang X. W. et al.. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43, 7067–7098 (2014). PubMed

Liu H. T., Liu Y. Q. & Zhu D. B. Chemical doping of graphene. J Mater Chem 21, 3335–3345 (2011).

Wang X. R. et al.. N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science 324, 768–771 (2009). PubMed

Lazar P., Zboril R., Pumera M. & Otyepka M. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Phys Chem Chem Phys 16, 14231–14235 (2014). PubMed

Ambrosi A., Poh H. L., Wang L., Sofer Z. & Pumera M. Capacitance of p-and n-Doped Graphenes is Dominated by Structural Defects Regardless of the Dopant Type. Chemsuschem 7, 1102–1106 (2014). PubMed

Choi C. H., Chung M. W., Kwon H. C., Park S. H. & Woo S. I. B. N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J Mater Chem A 1, 3694–3699 (2013).

Lv R. T. & Terrones M. Towards new graphene materials: Doped graphene sheets and nanoribbons. Mater Lett 78, 209–218 (2012).

Panchokarla L. S. et al.. Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv Mater 21, 4726–4730 (2009).

Wang Y., Shao Y. Y., Matson D. W., Li J. H. & Lin Y. H. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 4, 1790–1798 (2010). PubMed

Pumera M. Heteroatom modified graphenes: electronic and electrochemical applications. J Mater Chem C 2, 6454–6461 (2014).

Xue Y., Wu B., Bao Q. & Liu Y. Controllable Synthesis of Doped Graphene and Its Applications. Small 10, 2975–2991 (2014). PubMed

Poh H. L., Simek P., Sofer Z., Tomandl I. & Pumera M. Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J Mater Chem A 1, 13146–13153 (2013).

Sheng Z.-H. et al.. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34, 125–131 (2012). PubMed

Yang G.-H. et al.. Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv 3, 22597–22604 (2013).

Hui K. H., Ambrosi A., Sofer Z., Pumera M. & Bonanni A. The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification. Nanoscale 7, 9040–9045 (2015). PubMed

Zhang Y. X., Zhang J. & Su D. S. Substitutional Doping of Carbon Nanotubes with Heteroatoms and Their Chemical Applications. Chemsuschem 7, 1240–1250 (2014). PubMed

Deng C. et al.. Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens Bioelectron 31, 469–474 (2012). PubMed

Goh M. S., Bonanni A., Ambrosi A., Sofer Z. & Pumera M. Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. Analyst 136, 4738–4744 (2011). PubMed

Toh R. J., Bonanni A. & Pumera M. Oxidation of DNA bases is influenced by their position in the DNA strand. Electrochem Commun 22, 207–210 (2012).

Tan S. M., Poh H. L., Sofer Z. & Pumera M. Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. Analyst 138, 4885–4891 (2013). PubMed

Akhavan O., Ghaderi E., Hashemi E. & Rahighi R. Ultra-sensitive detection of leukemia by graphene. Nanoscale 6, 14810–14819 (2014). PubMed

Akhavan O., Ghaderi E. & Rahighi R. Toward Single-DNA Electrochemical Biosensing by Graphene Nanowalls. ACS Nano 6, 2904–2916 (2012). PubMed

Akhavan O., Ghaderi E., Rahighi R. & Abdolahad M. Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 79, 654–663 (2014).

Hummers W. S. & Offeman R. E. Preparation of Graphitic Oxide. J Am Chem Soc 80, 1339–1339 (1958).

Wang L., Sofer Z., Luxa J. & Pumera M. Nitrogen doped graphene: influence of precursors and conditions of the synthesis. J Mater Chem C 2, 2887–2893 (2014).

Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31, 1481–1487 (1898).

Wang L., Sofer Z., Simek P., Tomandl I. & Pumera M. Boron-Doped Graphene: Scalable and Tunable p-Type Carrier Concentration Doping. J Phys Chem C 117, 23251–23257 (2013).

Konopka S. J. & McDuffie B. Diffusion Coefficients of Ferricyanide and Ferrocyanide Ions in Aqueous Media, Using Twin-Electrode Thin-Layer Electrochemistry. Anal Chem 42, 1741–1746 (1970).

Detection Limits-XPS International LLC, http://www.xpsdata.com/Technique_limits_p1.pdf (2016).

Ferrari A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Sol State Commun 143, 47–57 (2007).

Banks C. E., Moore R. R., Davies T. J. & Compton R. G. Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem Commun, 1804–1805 (2004). PubMed

McCreery R. L., Cline K. K., McDermott C. A. & McDermott M. T. Control of Reactivity at Carbon Electrode Surfaces. Colloids Surf, A 93, 211–219 (1994).

Robinson R. S., Sternitzke K., McDermott M. T. & McCreery R. L. Morphology and Electrochemical Effects of Defects on Highly Oriented Pyrolytic-Graphite. J Electrochem Soc 138, 2412–2418 (1991).

Compton R. G. & Banks C. E. Understanding Voltammetry. 2nd edn (Imperial College Press, 2011).

Salimi A., Banks C. E. & Compton R. G. Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. Analyst 129, 225–228 (2004). PubMed

Desimoni E. & Brunetti B. Presenting Analytical Performances of Electrochemical Sensors. Some Suggestions. Electroanalysis 25, 1645–1651 (2013).

Miller J. C. & Miller J. N. Statistics and Chemometrics for Analytical Chemistry. 5th edn (Pearson Prentice Hall, 2005).

Currie L. A. Detection: International update, and some emerging di-lemmas involving calibration, the blank, and multiple detection decisions. Chemometrics and Intelligent Laboratory Systems 37, 151–181 (1997).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...