Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
27688258
PubMed Central
PMC5321225
DOI
10.1194/jlr.d070656
PII: S0022-2275(20)34549-1
Knihovny.cz E-zdroje
- Klíčová slova
- National Institute of Standards and Technology human blood plasma, docosahexaenoic acid, mass spectrometry, shotgun lipidomics, triple quadrupole/ion-trap,
- MeSH
- biologické markery analýza krev MeSH
- fosfatidylcholiny krev izolace a purifikace MeSH
- hmotnostní spektrometrie metody normy MeSH
- lidé MeSH
- referenční standardy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- biologické markery MeSH
- fosfatidylcholiny MeSH
Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PCs. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PCs. This approach is comprised of two MS methods: a precursor ion scanning (PIS) of mass m/z 184 in positive mode (PIS m/z +184) and MS3 fragmentation in negative mode, both performed on the same instrument, a hybrid triple quadrupole ion-trap mass spectrometer. The MS3 experiment identified the FA composition and the relative abundance of isobaric and sn-1, sn-2 positional isomeric PC species, which were subsequently combined with absolute quantitative data obtained by PIS m/z +184 scan. This approach was applied to the analysis of a National Institute of Standards and Technology human blood plasma standard reference material (SRM 1950). We quantified more than 70 PCs and confirmed that a majority are present in isobaric and isomeric mixtures. The FA content determined by this method was comparable to that obtained using GC with flame ionization detection, supporting the quantitative nature of this MS method. This methodology will provide more in-depth biomarker information for clinical and mechanistic studies.
Zobrazit více v PubMed
Quehenberger O., Armando A. M., Brown A. H., Milne S. B., Myers D. S., Merrill A. H., Bandyopadhyay S., Jones K. N., Kelly S., Shaner R. L., et al. . 2010. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51: 3299–3305. PubMed PMC
Holčapek M., Cifková E., Červená B., Lisa M., Vostálová J., and Galuszka J.. 2015. Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry. J. Chromatogr. A. 1377: 85–91. PubMed
Smith R. E., Lespi P., Di Luca M., Bustos C., Marra F. a., De Alaniz M. J. T., and Marra C. a.. 2008. A reliable biomarker derived from plasmalogens to evaluate malignancy and metastatic capacity of human cancers. Lipids. 43: 79–89. PubMed
Meikle P. J., Wong G., Tsorotes D., Barlow C. K., Weir J. M., Christopher M. J., MacIntosh G. L., Goudey B., Stern L., Kowalczyk A., et al. . 2011. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 31: 2723–2732. PubMed
Zhao Y., Fu L., Li R., Wang L-N., Yang Y., Liu N-N., Zhang C-M., Wang Y., Liu P., Tu B-B., et al. . 2012. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 10: 153. PubMed PMC
Tang W. H. W., Wang Z., Levison B. S., Koeth R. A., Britt E. B., Fu X., Wu Y., and Hazen S. L.. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368: 1575–1584. PubMed PMC
Akmurzina V. A., Petryakina E. E., Saveliev S. V., and Selishcheva A. A.. 2013. Using high-performance liquid chromatography/mass spectrometry for the quantification of plasma phospholipids in children with type 1 diabetes. J. Anal. Chem. 68: 1170–1177.
Hermansson M., Käkelä R., Berghäll M., Lehesjoki A. E., Somerharju P., and Lahtinen U.. 2005. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: A case study. J. Neurochem. 95: 609–617. PubMed
Han X., and Gross R. W.. 2005. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24: 367–412. PubMed
Han X., Yang K., and Gross R. W.. 2012. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31: 134–178. PubMed PMC
Ejsing C. S., Duchoslav E., Sampaio J., Simons K., Bonner R., Thiele C., Ekroos K., and Shevchenko A.. 2006. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78: 6202–6214. PubMed
Welti R., and Wang X.. 2004. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr. Opin. Plant Biol. 7: 337–344. PubMed
Ekroos K., Chernushevich I. V., Simons K., and Shevchenko A.. 2002. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem. 74: 941–949. PubMed
Zhang X., and Reid G. E.. 2006. Multistage tandem mass spectrometry of anionic phosphatidylcholine lipid adducts reveals novel dissociation pathways. Int. J. Mass Spectrom. 252: 242–255.
Nakanishi H., Iida Y., Shimizu T., and Taguchi R.. 2010. Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESI MS/MS. J. Biochem. 147: 245–256. PubMed
Wang M., Wang C., and Han X.. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization Mass spectrometry-What, How and Why? Mass Spectrom. Rev. Epub ahead of print. January 15, 2016; doi:10.1002/mas.21492. PubMed PMC
Browning L. M., Walker C. G., Mander A. P., West A. L., Madden J., Gambell J. M., Young S., Wang L., Jebb S. A., and Calder P. C.. 2012. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am. J. Clin. Nutr. 96: 748–758. PubMed PMC
Demirkan A., Isaacs A., Ugocsai P., Liebisch G., Struchalin M., Rudan I., Wilson J. F., Pramstaller P. P., Gyllensten U., Campbell H., et al. . 2013. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J. Psychiatr. Res. 47: 357–362. PubMed
Mapstone M., Cheema A. K., Fiandaca M. S., Zhong X., Mhyre T. R., MacArthur L. H., Hall W. J., Fisher S. G., Peterson D. R., Haley J. M., et al. . 2014. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20: 415–418. PubMed PMC
Krylova I. N., Sablin E. P., Moore J., Xu R. X., Waitt G. M., MacKay J. A., Juzumiene D., Bynum J. M., Madauss K., Montana V., et al. . 2005. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell. 120: 343–355. PubMed
Gonen T., Cheng Y., Sliz P., Hiroaki Y., Fujiyoshi Y., Harrison S. C., and Walz T.. 2005. Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature. 438: 633–638. PubMed PMC
Wenk M. R. 2010. Lipidomics: new tools and applications. Cell. 143: 888–895. PubMed
Li Y., Choi M., Cavey G., Daugherty J., Suino K., Kovach A., Bingham N. C., Kliewer S. A., and Xu H. E.. 2005. Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol. Cell. 17: 491–502. PubMed
Slotboom A. J., de Haas G. H., Bonsen P. P. M., Burbach-Westerhuis G. J., and van Deenen L. L. M.. 1970. Hydrolysis of phosphoglycerides by purified lipase preparations. I. Substrate-, positional- and stereo-specificity. Chem. Phys. Lipids. 4: 15–29.
Maccarone A. T., Duldig J., Mitchell T. W., Blanksby S. J., Duchoslav E., and Campbell J. L.. 2014. Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry. J. Lipid Res. 55: 1668–1677. PubMed PMC
Hsu F. F., Bohrer A., and Turk J.. 1998. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 9: 516–526. PubMed
Ho Y. P., and Huang P. C.. 2002. A novel structural analysis of glycerophosphocholines as TFA/K(+) adducts by electrospray ionization ion trap tandem mass spectrometry. Rapid Commun. Mass Spectrom. 16: 1582–1589. PubMed
Ekroos K., Ejsing C. S., Bahr U., Karas M., Simons K., and Shevchenko A.. 2003. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 44: 2181–2192. PubMed
Han X., Yang J., Cheng H., Ye H., and Gross R. W.. 2004. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal. Biochem. 330: 317–331. PubMed
Yang K., Zhao Z., Gross R. W., and Han X.. 2009. Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877: 2924–2936. PubMed PMC
Hou W., Zhou H., Bou Khalil M., Seebun D., Bennett S. A., and Figeys D.. 2011. Lyso-form fragment ions facilitate the determination of stereospecificity of diacyl glycerophospholipids. Rapid Commun. Mass Spectrom. 25: 205–217. PubMed
Folch J., Lees M., and Stanley G. H. S.. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509. PubMed
Bligh E. G., and Dyer W. J.. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917. PubMed
Jolly C. A., Jiang Y. H., Chapkin R. S., and McMurray D. N.. 1997. Dietary n-3 polyunsaturated fatty acid modulation of murine lymphoproliferation and interleukin-2 secretion: correlation with alterations in diacylglycerol and ceramide mass. J. Nutr. 127: 37–43. PubMed
Brügger B., Erben G., Sandhoff R., Wieland F. T., and Lehmann W. D.. 1997. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA. 94: 2339–2344. PubMed PMC
Picklo M. J., and Murphy E. J.. 2016. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic α-linolenic acid and eicosapentaenoic acid content in mice. Lipids. 51: 537–547. PubMed
Liebisch G., Vizcaíno J. A., Köfeler H., Trötzmüller M., Griffiths W. J., Schmitz G., Spener F., and Wakelam M. J. O.. 2013. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54: 1523–1530. PubMed PMC
Han X., and Gross R. W.. 1995. Structural determination of picomole amount of phospholipids via electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 6: 1202–1210. PubMed
Kerwin J. L., Tuininga A. R., and Ericsson L. H.. 1994. Identification of molecular species of glycerolphospholipids and sphingomyelin using electrospray mass-spectrometry. J. Lipid Res. 35: 1102–1114. PubMed
Dougherty R. M., Galli C., Ferroluzzi A., and Iacono J. M.. 1987. Lipid and phospholipid fatty-acid composition of plasma, red-blood-cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am. J. Clin. Nutr. 45: 443–455. PubMed
Bradamante S., Barchiesei E., Barenghi L., and Zoppi F.. 1990. An alternative expeditious analysis of phospholipid composition in human blood plasma by 31P NMR spectroscopy. Anal. Biochem. 185: 299–303. PubMed
Liebisch G., Lieser B., Rathenberg J., Drobnik W., and Schmitz G.. 2004. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta. 1686: 108–117. PubMed
Beermann C., Möbius M., Winterling N., Schmitt J. J., and Boehm G.. 2005. Sn-position determination of phospholipid-linked fatty acids derived from erythrocytes by liquid chromatography electrospray ionization ion-trap mass spectrometry. Lipids. 40: 211–218. PubMed
Hsu F-F., and Turk J.. 2009. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877: 2673–2695. PubMed PMC
Surma M. A., Herzog R., Vasilj A., Klose C., Christinat N., Morin-Rivron D., Simons K., Masoodi M., and Sampaio J. L.. 2015. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur. J. Lipid Sci. Technol. 117: 1540–1549. PubMed PMC
Hvattum E., and Hagelin G.. 1998. Study of mechanisms involved in the collision- induced dissociation of carboxylate anions from glycerophospholipids using negative ion electrospray tandem quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 12: 1405–1409. PubMed
Murphy R. C., Fiedler J., and Hevko J.. 2001. Analysis of nonvolatile lipids by mass spectrometry. Chem. Rev. 101: 479–526. PubMed
Lu Y., Hong S., Tjonahen E., and Serhan C. N.. 2005. Mediator-lipidomics: databases and search algorithms for PUFA-derived mediators. J. Lipid Res. 46: 790–802. PubMed
Vernooij E. A. A. M., Brouwers J. F. H. M., Kettenes-Van den Bosch J. J., and Crommelin D. J. A.. 2002. RP-hPLC/ESI MS determination of acyl chain positions in phospholipids. J. Sep. Sci. 25: 285–289.
Possmayer F., Scherphof G. L., Van Deenen L. L. M., Dubbelman T. M. A. R., and Van Golde L. M. G.. 1969. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver. Biochim. Biophys. Acta. 176: 95–110. PubMed