• This record comes from PubMed

Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat

. 2016 Oct 27 ; 17 (1) : 838. [epub] 20161027

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 27784266
PubMed Central PMC5081961
DOI 10.1186/s12864-016-3174-4
PII: 10.1186/s12864-016-3174-4
Knihovny.cz E-resources

BACKGROUND: Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. RESULTS: A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. CONCLUSIONS: This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol agents within a soil ecosystem. Global transcriptional analysis of the simplified soil microcosm revealed complex metabolic adaptation in the soil environment and specific responses to antagonistic or neutral intruders.

See more in PubMed

Hofman J, Bezchlebová J, Dušek L, Doležal L, Holoubek I, Anděl P, et al. Novel approach to monitoring of the soil biological quality. Environ Int. 2003;28:771–8. doi: 10.1016/S0160-4120(02)00068-5. PubMed DOI

Gkarmiri K, Finlay R, Alstrom S, Thomas E, Cubeta M, Hogberg N. Transcriptomic changes in the plant pathogenic fungus Rhizoctonia solani AG-3 in response to the antagonistic bacteria Serratia proteamaculans and Serratia plymuthica. BMC Genomics. 2015;16:630. doi: 10.1186/s12864-015-1758-z. PubMed DOI PMC

Nazir R, Warmink JA, Boersma H, Van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. Fems Microbiol Ecol. 2010;71:169–85. doi: 10.1111/j.1574-6941.2009.00807.x. PubMed DOI

Wargo MJ, Hogan DA. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol. 2006;9:359–64. doi: 10.1016/j.mib.2006.06.001. PubMed DOI

Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, et al. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol. 2015;17:2099–113. doi: 10.1111/1462-2920.12564. PubMed DOI

Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME J. 2015: doi:10.1038/ismej.2015.82. PubMed PMC

Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, et al. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One. 2013;8:e76487. doi: 10.1371/journal.pone.0076487. PubMed DOI PMC

Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504. doi: 10.1038/ismej.2011.29. PubMed DOI PMC

Massart S, Perazzolli M, Höfte M, Pertot I, Jijakli MH. Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. BioControl. 2015;60:725–46. doi: 10.1007/s10526-015-9686-z. DOI

Neupane S, Finlay RD, Alström S, Elfstrand M, Högberg N. Transcriptional responses of the bacterial antagonist Serratia plymuthica to the fungal phytopathogen Rhizoctonia solani. Environ Microbiol Rep. 2015;7:123–7. doi: 10.1111/1758-2229.12203. PubMed DOI

Baumgartner K, Coetzee MP, Hoffmeister D. Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol. 2011;12:515–34. doi: 10.1111/j.1364-3703.2010.00693.x. PubMed DOI PMC

Travadon R, Smith ME, Fujiyoshi P, Douhan GW, Rizzo DM, Baumgartner K. Inferring dispersal patterns of the generalist root fungus Armillaria mellea. New Phytol. 2012;193:959–69. doi: 10.1111/j.1469-8137.2011.04015.x. PubMed DOI

Perazzolli M, Bampi F, Faccin S, Moser M, De Luca F, Ciccotti AM, et al. Armillaria mellea induces a set of defense genes in grapevine roots and one of them codifies a protein with antifungal activity. Mol Plant Microbe Interact. 2010;23:485–96. doi: 10.1094/MPMI-23-4-0485. PubMed DOI

Aguin O, Mansilla JP, Sainz MJ. In vitro selection of an effective fungicide against Armillaria mellea and control of white root rot of grapevine in the field. Pest Manag Sci. 2006;62:223–8. doi: 10.1002/ps.1149. PubMed DOI

Longa CMO, Pertot I, Tosi S. Ecophysiological requirements and survival of a Trichoderma atroviride isolate with biocontrol potential. J Basic Microbiol. 2008;48:269–77. doi: 10.1002/jobm.200700396. PubMed DOI

Pellegrini A, Corneo PE, Camin F, Ziller L, Tosi S, Pertot I. Studying trophic interactions between a plant pathogen and two different antagonistic microorganisms using a 13C-labeled compound and isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:510–6. doi: 10.1002/rcm.6131. PubMed DOI

Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol. 2010;48:395–417. doi: 10.1146/annurev-phyto-073009-114314. PubMed DOI

Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, et al. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol. 2009;181:435–47. doi: 10.1111/j.1469-8137.2008.02675.x. PubMed DOI

Tarkka MT, Sarniguet A, Frey-Klett P. Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet. 2009;55:233–43. doi: 10.1007/s00294-009-0241-2. PubMed DOI

Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O, et al. Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol. 2014;80:3585–96. doi: 10.1128/AEM.00415-14. PubMed DOI PMC

Savazzini F, Longa CMO, Pertot I. Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol Biochem. 2009;41:1457–65. doi: 10.1016/j.soilbio.2009.03.027. DOI

Leibniz Institute DSMZ - German Collection of Microorganisms and cell Culture. www.dsmz.de. Accessed 01 Sept 2013.

ATTC Collection. www.lgcstandards-atcc.org. Accessed 01 Sept 2013.

CBS Collection. www.cbs.knaw.nl. Accessed 01 Sept 2013.

Ellis RJ. Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J Microbiol Methods. 2004;56:287–90. doi: 10.1016/j.mimet.2003.10.005. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

FASTQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc. Accessed 1 Jan 2014.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Sibthorp C, Wu H, Cowley G, Wong PW, Palaima P, Morozov I, et al. Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics. 2013;14:847. doi: 10.1186/1471-2164-14-847. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. doi: 10.1038/nbt.1754. PubMed DOI PMC

Anders S, Pyl PT, Huber W. HTSeq - a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int J Food Microbiol. 2013;163:171–9. doi: 10.1016/j.ijfoodmicro.2013.02.022. PubMed DOI

Johansson H, Dhaygude K, Lindstrom S, Helantera H, Sundstrom L, Trontti K. A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS One. 2013;8:e79777. doi: 10.1371/journal.pone.0079777. PubMed DOI PMC

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8. doi: 10.1038/nmeth.1226. PubMed DOI

Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G. High throughput sequencing methods and analysis for microbiome research. J Microbiol Methods. 2013;95:401–14. doi: 10.1016/j.mimet.2013.08.011. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93. doi: 10.1016/S0076-6879(06)11009-5. PubMed DOI

Falda M, Toppo S, Pescarolo A, Lavezzo E, Di Camillo B, Facchinetti A, et al. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics. 2012;13:S14. doi: 10.1186/1471-2105-13-S4-S14. PubMed DOI PMC

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9. doi: 10.1038/75556. PubMed DOI PMC

UniProt. http://www.uniprot.org/. Accessed 01 Jan 2016.

Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9. doi: 10.1093/bioinformatics/bti551. PubMed DOI

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, et al. SGD: saccharomyces genome database. Nucleic Acids Res. 1998;26:73–9. doi: 10.1093/nar/26.1.73. PubMed DOI PMC

Saccharomyces cerevisiae S288c. http://fungi.ensembl.org/Saccharomyces_cerevisiae/Info/Index. Accessed 01 Sept 2014.

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5. doi: 10.1093/nar/gkm321. PubMed DOI PMC

KAAS: KEGG Automatic Annotation Server. http://www.genome.jp/tools/kaas. Accessed 01 Jan 2016.

Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 2011;39:W412–5. doi: 10.1093/nar/gkr313. PubMed DOI PMC

iPath2.0: interactive pathway explorer. http://pathways.embl.de/. Accessed 01 Jan 2016.

T-Coffee Multiple Sequence Alignment. http://www.ebi.ac.uk/Tools/msa/tcoffee/. Accessed 01 Mar 2016.

Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. doi: 10.1186/gb-2007-8-2-r19. PubMed DOI PMC

Silver N, Best S, Jiang J, Thein S. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006;7:33. doi: 10.1186/1471-2199-7-33. PubMed DOI PMC

Lee K-B, De Backer P, Aono T, Liu C-T, Suzuki S, Suzuki T, et al. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics. 2008;9:271. doi: 10.1186/1471-2164-9-271. PubMed DOI PMC

Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, et al. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology. 2009;155:1758–75. doi: 10.1099/mic.0.027839-0. PubMed DOI PMC

Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One. 2010;5:e10433. doi: 10.1371/journal.pone.0010433. PubMed DOI PMC

Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotech. 2005;23:873–8. doi: 10.1038/nbt1110. PubMed DOI PMC

Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. Genome evolution in yeasts. Nature. 2004;430:35–44. doi: 10.1038/nature02579. PubMed DOI

Kumar S, Randhawa A, Ganesan K, Raghava GP, Mondal AK. Draft genome sequence of salt-tolerant yeast Debaryomyces hansenii var. hansenii MTCC 234. Eukaryot Cell. 2012;11:961–2. doi: 10.1128/EC.00137-12. PubMed DOI PMC

Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotech. 2007;25:319–26. doi: 10.1038/nbt1290. PubMed DOI

Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, et al. The genome sequence of Schizosaccharomyces pombe. Nature. 2002;415:871–80. doi: 10.1038/nature724. PubMed DOI

Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotech. 2007;25:221–31. doi: 10.1038/nbt1282. PubMed DOI

van den Berg MA, Albang R, Albermann K, Badger JH, Daran J-M, M Driessen AJ, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotech. 2008;26:1161–8. doi: 10.1038/nbt.1498. PubMed DOI

Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–73. doi: 10.1038/nature08850. PubMed DOI PMC

Kubicek C, Herrera-Estrella A, Seidl-Seiboth V, Martinez D, Druzhinina I, Thon M, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12:R40. doi: 10.1186/gb-2011-12-4-r40. PubMed DOI PMC

Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S. Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res. 2013;12:2552–70. doi: 10.1021/pr301131t. PubMed DOI PMC

Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, et al. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 2010;152:1787–95. doi: 10.1104/pp.109.149716. PubMed DOI PMC

Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, et al. Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics. 2012;13:660. doi: 10.1186/1471-2164-13-660. PubMed DOI PMC

Tyc O, Wolf AB, Garbeva P. The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms. PLoS One. 2015;10:e0119838. doi: 10.1371/journal.pone.0119838. PubMed DOI PMC

Stout JD. The role of protozoa in nutrient cycling and energy flow. In: Alexander M, editor. Advances in microbial ecology. Boston: Springer US; 1980. pp. 1–50.

Leonhartsberger S, Korsa I, Bock A. The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol. 2002;4:269–76. PubMed

Turnbull GA, Morgan JA, Whipps JM, Saunders JR. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. Fems Microbiol Ecol. 2001;36:21–31. doi: 10.1111/j.1574-6941.2001.tb00822.x. PubMed DOI

Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25. doi: 10.1038/nrmicro2259. PubMed DOI PMC

Pal KK, McSpadden GB. Biological control of plant pathogens. Plant Health Instr. 2006;10:1094–117.

Deveau A, Barret M, Diedhiou A, Leveau J, de Boer W, Martin F, et al. Pairwise transcriptomic analysis of the interactions between the ectomycorrhizal fungus Laccaria bicolor s238n and three beneficial, neutral and antagonistic soil bacteria. Microb Ecol. 2015;69:146–59. doi: 10.1007/s00248-014-0445-y. PubMed DOI

Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, et al. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics. 2013;14:121. doi: 10.1186/1471-2164-14-121. PubMed DOI PMC

Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, et al. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics. 2009;10:567. doi: 10.1186/1471-2164-10-567. PubMed DOI PMC

Gebendorfer KM, Drazic A, Le Y, Gundlach J, Bepperling A, Kastenmuller A, et al. Identification of a hypochlorite-specific transcription factor from Escherichia coli. J Biol Chem. 2012;287:6892–903. doi: 10.1074/jbc.M111.287219. PubMed DOI PMC

Braun BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in C. albicans, is down‐regulated during filament induction. EMBO J. 2001;20:4753–61. doi: 10.1093/emboj/20.17.4753. PubMed DOI PMC

Park W, Padmanabhan P, Padmanabhan S, Zylstra GJ, Madsen EL. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNAb. Microbiology. 2002;148:2319–29. doi: 10.1099/00221287-148-8-2319. PubMed DOI

Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol. 2011;77:4361–70. doi: 10.1128/AEM.00129-11. PubMed DOI PMC

Viterbo A, Ramot O, Chernin L, Chet I. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek. 2002;81:549–56. doi: 10.1023/A:1020553421740. PubMed DOI

Steindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ, Ulhoa CJ, et al. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics. 2014;15:1–14. doi: 10.1186/1471-2164-15-204. PubMed DOI PMC

Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma – a genomic perspective. Microbiology. 2012;158:35–45. doi: 10.1099/mic.0.053629-0. PubMed DOI

Zeilinger S, Gruber S, Bansal R, Mukherjee PK. Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biol Rev. 2016;30:74–90. doi: 10.1016/j.fbr.2016.05.001. DOI

Azorhizobium caulinodans ORS 571. http://bacteria.ensembl.org/azorhizobium_caulinodans_ors_571/Info/Index. Accessed 01 Sept 2014.

Bacillus subtilis subtilis 168 http://bacteria.ensembl.org/Bacillus_subtilis_subsp_subtilis_str_168/Info/Index. Accessed 01 Sept 2014.

Cupriavidus metallidurans CH34. http://bacteria.ensembl.org/cupriavidus_metallidurans_ch34/Info/Index. Accessed 01 Sept 2014.

Pseudomonas protegens Pf-5. http://bacteria.ensembl.org/pseudomonas_protegens_pf_5/Info/Index. Accessed 01 Sept 2014.

Debaryomyces hansenii CBS767. http://genome.jgi.doe.gov/Debha1/Debha1.home.html. Accessed 01 Sept 2014.

Pichia stipitis CBS6054. http://genome.jgi-psf.org/Picst3/Picst3.home.html. Accessed 01 Sept 2014.

Schizosaccharomyces pombe 972h. http://fungi.ensembl.org/Schizosaccharomyces_pombe/Info/Index. Accessed 01 Sept 2014.

Aspergillus niger CBS 513.88. http://fungi.ensembl.org/Aspergillus_niger/Info/Index. Accessed 01 Sept 2014.

Fusarium oxysporum lycopersici 4287. http://fungi.ensembl.org/Fusarium_oxysporum/Info/Index. Accessed 01 Sept 2014.

Penicillium chrysogenum Wisconsin54-125. http://genome.jgi.doe.gov/PenchWisc1_1/PenchWisc1_1.home.html. Accessed 01 Sept 2014.

Trichoderma atroviride IMI 206040. http://genome.jgi.doe.gov/Triat2/Triat2.home.html. Accessed 01 Sept 2014.

Armillaria mellea DSM 3731. http://genome.jgi.doe.gov/Armme1_1/Armme1_1.home.html. Accessed 01 Sept 2014.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...