Ultrastructural Localization of Intracellular Calcium During Spermatogenesis of Sterlet (Acipenser ruthenus)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27866505
DOI
10.1017/s1431927616011958
PII: S1431927616011958
Knihovny.cz E-zdroje
- Klíčová slova
- calcium, oxalate–pyroantimonate, spermatozoon, subcellular localization,
- MeSH
- ryby anatomie a histologie metabolismus fyziologie MeSH
- spermatidy ultrastruktura MeSH
- spermatogeneze fyziologie MeSH
- spermatogonie ultrastruktura MeSH
- spermie ultrastruktura MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vápník MeSH
Calcium regulates many intracellular events such as growth and differentiation during different stages of gamete development. The aim of this study was to localize and quantify the intracellular distribution of calcium during different developmental stages of spermatogenesis in sterlet, Acipenser ruthenus, using a combined oxalate-pyroantimonate technique. The distribution of calcium was described in spermatogonium, spermatocyte, spermatid, and spermatozoon stages. In the spermatogonium and spermatocyte, calcium deposits were mainly localized in the nucleus and cytoplasm. The spermatid had calcium in the nucleus, developing acrosomal vesicle, and cytoplasm. Intracellular calcium transformed from scattered deposits in spermatogonia and spermatocyte stages into an unbound form in spermatid and the spermatozoon. The proportion of area covered by calcium increased significantly (p<0.05) from early to late stages of spermatogenesis. The largest proportion of area covered by calcium was observed in the nucleus of the spermatozoon. In conclusion, although most of the intracellular calcium is deposited in limited areas of the spermatogonium and spermatocyte, it is present an unbound form in the larger area of spermatids and spermatozoa which probably reflects changes in its physiological function and homeostasis during the process of male gamete production in spermatogenesis.
Citace poskytuje Crossref.org