An enzymatic assay based on luciferase Ebola virus-like particles for evaluation of virolytic activity of antimicrobial peptides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28012857
PubMed Central
PMC7115697
DOI
10.1016/j.peptides.2016.12.015
PII: S0196-9781(16)30261-3
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial peptides, Cytotoxic peptides, Ebola, Hemolytic activity, Lentivirus, Marburg, Nanoluciferase, Virolytic activity, Virus-like particles,
- MeSH
- anionty MeSH
- antivirové látky farmakologie MeSH
- hemoragická horečka Ebola prevence a kontrola virologie MeSH
- kationické antimikrobiální peptidy farmakologie MeSH
- Lentivirus účinky léků genetika MeSH
- lidé MeSH
- liposomy chemie MeSH
- peptidy farmakologie MeSH
- virus Ebola účinky léků patogenita MeSH
- VLP vakcíny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anionty MeSH
- antivirové látky MeSH
- kationické antimikrobiální peptidy MeSH
- liposomy MeSH
- peptidy MeSH
- VLP vakcíny MeSH
Antimicrobial peptides are currently considered as promising antiviral compounds. Current assays to evaluate the effectivity of peptides against enveloped viruses based on liposomes or hemolysis are encumbered by the artificial nature of liposomes or distinctive membrane composition of used erythrocytes. We propose a novel assay system based on enzymatic Ebola virus-like particles containing sensitive luciferase reporter. The assay was validated with several cationic and anionic peptides and compared with lentivirus inactivation and hemolytic assays. The assay is sensitive and easy to perform in standard biosafety level laboratory with potential for high-throughput screens. The use of virus-like particles in the assay provides a system as closely related to the native viruses as possible eliminating some issues associated with other more artificial set ups. We have identified CAM-W (KWKLWKKIEKWGQGIGAVLKWLTTWL) as a peptide with the greatest antiviral activity against infectious lentiviral vectors and filoviral virus-like particles.
Zobrazit více v PubMed
Anastasi A., Erspamer V., Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia. 1971;27:166–167. PubMed
Lai R., Liu H., Hui Lee W., Zhang Y. An anionic antimicrobial peptide from toad Bombina maxima. Biochem. Biophys. Res. Commun. 2002;295:796–799. PubMed
Conlon J.M., Kolodziejek J., Nowotny N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta. 2009;1788:1556–1563. PubMed
Gajski G., Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 2013;36:697–705. PubMed
Dai C., Ma Y., Zhao Z., Zhao R., Wang Q., Wu Y., Cao Z., Li W. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob. Agents Chemother. 2008;52:3967–3972. PubMed PMC
Yan L., Adams M.E. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J. Biol. Chem. 1998;273:2059–2066. PubMed
Hansel W., Enright F., Leuschner C. Destruction of breast cancers and their metastases by lytic peptide conjugates in vitro and in vivo. Mol. Cell. Endocrinol. 2007;260–262:183–189. PubMed
Hansel W., Leuschner C., Enright F. Conjugates of lytic peptides and LHRH or betaCG target and cause necrosis of prostate cancers and metastases. Mol. Cell. Endocrinol. 2007;269:26–33. PubMed
Huang Y.B., Wang X.F., Wang H.Y., Liu Y., Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol. Cancer Ther. 2011;10:416–426. PubMed
Wu D., Gao Y., Qi Y., Chen L., Ma Y., Li Y. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett. 2014;351:13–22. PubMed
Li Q., Zhao Z., Zhou D., Chen Y., Hong W., Cao L., Yang J., Zhang Y., Shi W., Cao Z., Wu Y., Yan H., Li W. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32:1518–1525. PubMed PMC
Baghian A., Jaynes J., Enright F., Kousoulas K.G. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides. 1997;18:177–183. PubMed
Wachinger M., Kleinschmidt A., Winder D., von Pechmann N., Ludvigsen A., Neumann M., Holle R., Salmons B., Erfle V., Brack-Werner R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol. 1998;79(Pt 4):731–740. PubMed
Kalfa V.C., Jia H.P., Kunkle R.A., McCray P.B., Tack B.F., Brogden K.A. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob. Agents Chemother. 2001;45:3256–3261. PubMed PMC
Steinstraesser L., Tack B.F., Waring A.J., Hong T., Boo L.M., Fan M.H., Remick D.I., Su G.L., Lehrer R.I., Wang S.C. Activity of novispirin G10 against Pseudomonas aeruginosa in vitro and in infected burns. Antimicrob. Agents Chemother. 2002;46:1837–1844. PubMed PMC
Dorosz J., Gofman Y., Kolusheva S., Otzen D., Ben-Tal N., Nielsen N.C., Jelinek R. Membrane interactions of novicidin, a novel antimicrobial peptide: phosphatidylglycerol promotes bilayer insertion. J. Phys. Chem. B. 2010;114:11053–11060. PubMed
Boman H.G., Wade D., Boman I.A., Wåhlin B., Merrifield R.B. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989;259:103–106. PubMed
Ji S., Li W., Zhang L., Zhang Y., Cao B. Cecropin A-melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro. Biochem. Biophys. Res. Commun. 2014;451:650–655. PubMed
Wyman T.B., Nicol F., Zelphati O., Scaria P.V., Plank C., Szoka F.C. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry. 1997;36:3008–3017. PubMed
Li W., Nicol F., Szoka F.C. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev. 2004;56:967–985. PubMed
Martinez O., Valmas C., Basler C.F. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology. 2007;364:342–354. PubMed PMC
Schudt G., Kolesnikova L., Dolnik O., Sodeik B., Becker S. Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc. Natl. Acad. Sci. U. S. A. 2013;110:14402–14407. PubMed PMC
Hall M.P., Unch J., Binkowski B.F., Valley M.P., Butler B.L., Wood M.G., Otto P., Zimmerman K., Vidugiris G., Machleidt T., Robers M.B., Benink H.A., Eggers C.T., Slater M.R., Meisenheimer P.L., Klaubert D.H., Fan F., Encell L.P., Wood K.V. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 2012;7:1848–1857. PubMed PMC
Manicassamy B., Rong L. Expression of Ebolavirus glycoprotein on the target cells enhances viral entry. Virol. J. 2009;6:75. PubMed PMC
Tscherne D.M., Manicassamy B., García-Sastre A. An enzymatic virus-like particle assay for sensitive detection of virus entry. J. Virol. Methods. 2010;163:336–343. PubMed PMC
Kato S., Kuramochi M., Takasumi K., Kobayashi K., Inoue K., Takahara D., Hitoshi S., Ikenaka K., Shimada T., Takada M. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum. Gene Ther. 2011;22:1511–1523. PubMed
Milani A., Benedusi M., Aquila M., Rispoli G. Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane. Molecules. 2009;14:5179–5188. PubMed PMC
Ladokhin A.S., Selsted M.E., White S.H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J. 1997;72:1762–1766. PubMed PMC
Jackman J.A., Goh H.Z., Zhdanov V.P., Knoll W., Cho N.J. Deciphering how pore formation causes strain-induced membrane lysis of lipid vesicles. J. Am. Chem. Soc. 2016;138:1406–1413. PubMed
Sakaguchi T., Leser G.P., Lamb R.A. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J. Cell Biol. 1996;133:733–747. PubMed PMC
McKay T., Patel M., Pickles R.J., Johnson L.G., Olsen J.C. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther. 2006;13:715–724. PubMed
Jallouk A.P., Moley K.H., Omurtag K., Hu G., Lanza G.M., Wickline S.A., Hood J.L. Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity. PLoS One. 2014;9:e95411. PubMed PMC
VanCompernolle S., Smith P.B., Bowie J.H., Tyler M.J., Unutmaz D., Rollins-Smith L.A. Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides. 2015;71:296–303. PubMed