Integrating Internal Standards into Disposable Capillary Electrophoresis Devices To Improve Quantification
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28192985
PubMed Central
PMC5343550
DOI
10.1021/acs.analchem.6b04172
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
To improve point-of-care quantification using microchip capillary electrophoresis (MCE), the chip-to-chip variabilities inherent in disposable, single-use devices must be addressed. This work proposes to integrate an internal standard (ISTD) into the microchip by adding it to the background electrolyte (BGE) instead of the sample-thus eliminating the need for additional sample manipulation, microchip redesigns, and/or system expansions required for traditional ISTD usage. Cs and Li ions were added as integrated ISTDs to the BGE, and their effects on the reproducibility of Na quantification were explored. Results were then compared to the conclusions of our previous publication which used Cs and Li as traditional ISTDs. The in-house fabricated microchips, electrophoretic protocols, and solution matrixes were kept constant, allowing the proposed method to be reliably compared to the traditional method. Using the integrated ISTDs, both Cs and Li improved the Na peak area reproducibility approximately 2-fold, to final RSD values of 2.2-4.7% (n = 900). In contrast (to previous work), Cs as a traditional ISTD resulted in final RSDs of 2.5-8.8%, while the traditional Li ISTD performed poorly with RSDs of 6.3-14.2%. These findings suggest integrated ISTDs are a viable method to improve the precision of disposable MCE devices-giving matched or superior results to the traditional method in this study while neither increasing system cost nor complexity.
See more in PubMed
Ryvolová M.; Macka M.; Preisler J. TrAC, Trends Anal. Chem. 2010, 29 (4), 339–353. 10.1016/j.trac.2009.12.010. DOI
Breadmore M. C. J. Chromatogr. A 2012, 1221, 42–55. 10.1016/j.chroma.2011.09.062. PubMed DOI
Floris A.; Staal S.; Lenk S.; Staijen E.; Kohlheyer D.; Eijkel J. C. T.; van den Berg A. Lab Chip 2010, 10 (14), 1799–1806. 10.1039/c003899g. PubMed DOI
Staal S.; Ungerer M.; Floris A.; Ten Brinke H.-W.; Helmhout R.; Tellegen M.; Janssen K.; Karstens E.; van Arragon C.; Lenk S.; Staijen E.; Bartholomew J.; Krabbe H.; Movig K.; Dubský P.; van den Berg A.; Eijkel J. Electrophoresis 2015, 36 (5), 712–721. 10.1002/elps.201400428. PubMed DOI
Altria K. D.; Glaxosmithkline R. LC-GC Eur. 2002, 15 (9), 588–594.
Dose E. V.; Guiochon G. A. Anal. Chem. 1991, 63 (11), 1154–1158. 10.1021/ac00011a018. DOI
Blanco-Heras G. A.; Turnes-Carou M. I.; López-Mahía P.; Muniategui-Lorenzo S.; Prada-Rodríguez D.; Fernández-Fernández E. Electrophoresis 2008, 29 (6), 1347–1354. 10.1002/elps.200700413. PubMed DOI
Revermann T.; Götz S.; Künnemeyer J.; Karst U. Analyst 2008, 133 (2), 167–174. 10.1039/B711165G. PubMed DOI
Masár M.; Bomastyk B.; Bodor R.; Horčičiak M.; Danč L.; Troška P.; Kuss H.-M. Microchim. Acta 2012, 177 (3–4), 309–316. 10.1007/s00604-012-0788-3. DOI
Bidulock A. C. E.; van den Berg A.; Eijkel J. C. T. Electrophoresis 2015, 36 (6), 875–883. 10.1002/elps.201400399. PubMed DOI
Gaš B.; Kenndler E. Electrophoresis 2004, 25 (23–24), 3901–3912. 10.1002/elps.200406159. PubMed DOI
Beckers J. L. J. Chromatogr. A 1994, 679 (1), 153–165. 10.1016/0021-9673(94)80322-6. DOI
Štědrý M.; Jaroš M.; Gaš B. J. Chromatogr. A 2002, 960 (1–2), 187–198. 10.1016/S0021-9673(02)00239-X. PubMed DOI
Vrouwe E. X.; Luttge R.; van den Berg A. Electrophoresis 2004, 25 (10–11), 1660–1667. 10.1002/elps.200405885. PubMed DOI
Mazet V.; Carteret C.; Brie D.; Idier J.; Humbert B. Chemom. Intell. Lab. Syst. 2005, 76 (2), 121–133. 10.1016/j.chemolab.2004.10.003. DOI
Gaš B.; Hruška V.; Dittmann M.; Bek F.; Witt K. J. Sep. Sci. 2007, 30 (10), 1435–1445. 10.1002/jssc.200600502. PubMed DOI
Jaroš M.; Hruška V.; Štědrý M.; Zusková I.; Gaš B. Electrophoresis 2004, 25 (18–19), 3080–3085. 10.1002/elps.200405982. PubMed DOI
Hruška V.; Jaroš M.; Gaš B. Electrophoresis 2006, 27 (5–6), 984–991. 10.1002/elps.200500756. PubMed DOI
Gaš B. PeakMaster and Simul 5. http://echmet.natur.cuni.cz/download (accessed Oct 21, 2016).
Štědrý M.; Jaroš M.; Včeláková K.; Gaš B. Electrophoresis 2003, 24, 536–547. 10.1002/elps.200390061. PubMed DOI
Hruška V.; Štědrý M.; Včeláková K.; Lokajová J.; Tesařová E.; Jaroš M.; Gaš B. Electrophoresis 2006, 27 (23), 4610–4617. 10.1002/elps.200600277. PubMed DOI
Blas M.; Delaunay N.; Rocca J.-L. Electrophoresis 2008, 29 (1), 20–32. 10.1002/elps.200700389. PubMed DOI
Vrouwe E. X.; Luttge R.; Olthuis W.; van den Berg A. Electrophoresis 2005, 26 (15), 3032–3042. 10.1002/elps.200500012. PubMed DOI
Alarie J. P.; Jacobson S. C.; Ramsey J. M. Electrophoresis 2001, 22 (2), 312–317. 10.1002/1522-2683(200101)22:2<312::AID-ELPS312>3.0.CO;2-3. PubMed DOI
Guidance Document for Single Laboratory Validation of Quantitative Analytical Methods—Guidance Used in Support of Pre-and-Post-Registration Data Requirements for Plant Protection and Biocidal Products; ENV/JM/MONO, No. 204; OECD: Paris, 2014; Vol. 20, pp 23–25.