• This record comes from PubMed

Integrating Internal Standards into Disposable Capillary Electrophoresis Devices To Improve Quantification

. 2017 Mar 07 ; 89 (5) : 2886-2892. [epub] 20170215

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

To improve point-of-care quantification using microchip capillary electrophoresis (MCE), the chip-to-chip variabilities inherent in disposable, single-use devices must be addressed. This work proposes to integrate an internal standard (ISTD) into the microchip by adding it to the background electrolyte (BGE) instead of the sample-thus eliminating the need for additional sample manipulation, microchip redesigns, and/or system expansions required for traditional ISTD usage. Cs and Li ions were added as integrated ISTDs to the BGE, and their effects on the reproducibility of Na quantification were explored. Results were then compared to the conclusions of our previous publication which used Cs and Li as traditional ISTDs. The in-house fabricated microchips, electrophoretic protocols, and solution matrixes were kept constant, allowing the proposed method to be reliably compared to the traditional method. Using the integrated ISTDs, both Cs and Li improved the Na peak area reproducibility approximately 2-fold, to final RSD values of 2.2-4.7% (n = 900). In contrast (to previous work), Cs as a traditional ISTD resulted in final RSDs of 2.5-8.8%, while the traditional Li ISTD performed poorly with RSDs of 6.3-14.2%. These findings suggest integrated ISTDs are a viable method to improve the precision of disposable MCE devices-giving matched or superior results to the traditional method in this study while neither increasing system cost nor complexity.

See more in PubMed

Ryvolová M.; Macka M.; Preisler J. TrAC, Trends Anal. Chem. 2010, 29 (4), 339–353. 10.1016/j.trac.2009.12.010. DOI

Breadmore M. C. J. Chromatogr. A 2012, 1221, 42–55. 10.1016/j.chroma.2011.09.062. PubMed DOI

Floris A.; Staal S.; Lenk S.; Staijen E.; Kohlheyer D.; Eijkel J. C. T.; van den Berg A. Lab Chip 2010, 10 (14), 1799–1806. 10.1039/c003899g. PubMed DOI

Staal S.; Ungerer M.; Floris A.; Ten Brinke H.-W.; Helmhout R.; Tellegen M.; Janssen K.; Karstens E.; van Arragon C.; Lenk S.; Staijen E.; Bartholomew J.; Krabbe H.; Movig K.; Dubský P.; van den Berg A.; Eijkel J. Electrophoresis 2015, 36 (5), 712–721. 10.1002/elps.201400428. PubMed DOI

Altria K. D.; Glaxosmithkline R. LC-GC Eur. 2002, 15 (9), 588–594.

Dose E. V.; Guiochon G. A. Anal. Chem. 1991, 63 (11), 1154–1158. 10.1021/ac00011a018. DOI

Blanco-Heras G. A.; Turnes-Carou M. I.; López-Mahía P.; Muniategui-Lorenzo S.; Prada-Rodríguez D.; Fernández-Fernández E. Electrophoresis 2008, 29 (6), 1347–1354. 10.1002/elps.200700413. PubMed DOI

Revermann T.; Götz S.; Künnemeyer J.; Karst U. Analyst 2008, 133 (2), 167–174. 10.1039/B711165G. PubMed DOI

Masár M.; Bomastyk B.; Bodor R.; Horčičiak M.; Danč L.; Troška P.; Kuss H.-M. Microchim. Acta 2012, 177 (3–4), 309–316. 10.1007/s00604-012-0788-3. DOI

Bidulock A. C. E.; van den Berg A.; Eijkel J. C. T. Electrophoresis 2015, 36 (6), 875–883. 10.1002/elps.201400399. PubMed DOI

Gaš B.; Kenndler E. Electrophoresis 2004, 25 (23–24), 3901–3912. 10.1002/elps.200406159. PubMed DOI

Beckers J. L. J. Chromatogr. A 1994, 679 (1), 153–165. 10.1016/0021-9673(94)80322-6. DOI

Štědrý M.; Jaroš M.; Gaš B. J. Chromatogr. A 2002, 960 (1–2), 187–198. 10.1016/S0021-9673(02)00239-X. PubMed DOI

Vrouwe E. X.; Luttge R.; van den Berg A. Electrophoresis 2004, 25 (10–11), 1660–1667. 10.1002/elps.200405885. PubMed DOI

Mazet V.; Carteret C.; Brie D.; Idier J.; Humbert B. Chemom. Intell. Lab. Syst. 2005, 76 (2), 121–133. 10.1016/j.chemolab.2004.10.003. DOI

Gaš B.; Hruška V.; Dittmann M.; Bek F.; Witt K. J. Sep. Sci. 2007, 30 (10), 1435–1445. 10.1002/jssc.200600502. PubMed DOI

Jaroš M.; Hruška V.; Štědrý M.; Zusková I.; Gaš B. Electrophoresis 2004, 25 (18–19), 3080–3085. 10.1002/elps.200405982. PubMed DOI

Hruška V.; Jaroš M.; Gaš B. Electrophoresis 2006, 27 (5–6), 984–991. 10.1002/elps.200500756. PubMed DOI

Gaš B. PeakMaster and Simul 5. http://echmet.natur.cuni.cz/download (accessed Oct 21, 2016).

Štědrý M.; Jaroš M.; Včeláková K.; Gaš B. Electrophoresis 2003, 24, 536–547. 10.1002/elps.200390061. PubMed DOI

Hruška V.; Štědrý M.; Včeláková K.; Lokajová J.; Tesařová E.; Jaroš M.; Gaš B. Electrophoresis 2006, 27 (23), 4610–4617. 10.1002/elps.200600277. PubMed DOI

Blas M.; Delaunay N.; Rocca J.-L. Electrophoresis 2008, 29 (1), 20–32. 10.1002/elps.200700389. PubMed DOI

Vrouwe E. X.; Luttge R.; Olthuis W.; van den Berg A. Electrophoresis 2005, 26 (15), 3032–3042. 10.1002/elps.200500012. PubMed DOI

Alarie J. P.; Jacobson S. C.; Ramsey J. M. Electrophoresis 2001, 22 (2), 312–317. 10.1002/1522-2683(200101)22:2<312::AID-ELPS312>3.0.CO;2-3. PubMed DOI

Guidance Document for Single Laboratory Validation of Quantitative Analytical Methods—Guidance Used in Support of Pre-and-Post-Registration Data Requirements for Plant Protection and Biocidal Products; ENV/JM/MONO, No. 204; OECD: Paris, 2014; Vol. 20, pp 23–25.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...