Ubiquitin-specific peptidase 48 regulates Mdm2 protein levels independent of its deubiquitinase activity

. 2017 Feb 24 ; 7 () : 43180. [epub] 20170224

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28233861

The overexpression of Mdm2 has been linked to the loss of p53 tumour suppressor activity in several human cancers. Here, we present results suggesting that ubiquitin-specific peptidase 48 (USP48), a deubiquitinase that has been linked in previous reports to the NF-κB signaling pathway, is a novel Mdm2 binding partner that promotes Mdm2 stability and enhances Mdm2-mediated p53 ubiquitination and degradation. In contrast to other deubiquitinating enzymes (DUBs) that have been previously implicated in the regulation of Mdm2 protein stability, USP48 did not induce Mdm2 stabilization by significantly reducing Mdm2 ubiquitination levels. Moreover, two previously characterized USP48 mutants lacking deubiquitinase activity were also capable of efficiently stabilizing Mdm2, indicating that USP48 utilizes a non-canonical, deubiquitination-independent mechanism to promote Mdm2 oncoprotein stability. This study represents, to the best of our knowledge, the first report suggesting DUB-mediated target protein stabilization that is independent of its deubiquitinase activity. In addition, our results suggest that USP48 might represent a new mechanism of crosstalk between the NF-κB and p53 stress response pathways.

Zobrazit více v PubMed

Montes de Oca Luna R., Wagner D. S. & Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995). PubMed

Parant J. et al.. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat. Genet. 29, 92–5 (2001). PubMed

Ringshausen I., O’Shea C. C., Finch A. J., Swigart L. B. & Evan G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006). PubMed

Toledo F. & Wahl G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6, 909–23 (2006). PubMed

Komander D., Clague M. J. & Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009). PubMed

Fraile J. M., Quesada V., Rodríguez D., Freije J. M. P. & López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373–88 (2012). PubMed

Li M. et al.. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–53 (2002). PubMed

Meulmeester E., Pereg Y., Shiloh Y. & Jochemsen A. G. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4, 1166–1170 (2005). PubMed

Brooks C. L., Li M., Hu M., Shi Y. & Gu W. The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26, 7262–6 (2007). PubMed PMC

Cummins J. M. et al.. Tumour suppression: Disruption of HAUSP gene stabilizes p53. Nature 428, 486–7 (2004). PubMed

Li M., Brooks C. L., Kon N. & Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13, 879–886 (2004). PubMed

Song M. S. et al.. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–7 (2008). PubMed PMC

Yuan J., Luo K., Zhang L., Cheville J. C. & Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384–96 (2010). PubMed PMC

Jochemsen A. G. & Shiloh Y. USP10: friend and foe. Cell 140, 308–10 (2010). PubMed

Hock A. K., Vigneron A. M. & Vousden K. H. Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity. J. Biol. Chem. 289, 34862–34870 (2014). PubMed PMC

Zhang L. et al.. The Deubiquitinating Enzyme USP24 Is a Regulator of the UV Damage Response. Cell Rep. 10, 140–147 (2015). PubMed PMC

Stevenson L. F. et al.. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26, 976–86 (2007). PubMed PMC

Allende-Vega N., Sparks a, Lane D. P. & Saville M. K. MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene 29, 432–41 (2010). PubMed

Zhang X., Berger F. G., Yang J. & Lu X. USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO J. 30, 2177–2189 (2011). PubMed PMC

Meitinger F. et al.. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214, 155–166 (2016). PubMed PMC

Fong C. S. et al.. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife 5, e16270 (2016). PubMed PMC

Quesada V. et al.. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem. Biophys. Res. Commun. 314, 54–62 (2004). PubMed

Tzimas C. et al.. Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. Cell. Signal. 18, 83–92 (2006). PubMed

Schweitzer K. & Naumann M. CSN-associated USP48 confers stability to nuclear NF-κB/RelA by trimming K48-linked Ub-chains. Biochim. Biophys. Acta 1853, 453–69 (2015). PubMed

Tergaonkar V., Pando M., Vafa O., Wahl G. & Verma I. p53 stabilization is decreased upon NFkB activation: A role for NFkB in acquisition of resistance to chemotherapy. Cancer Cell 1, 493–503 (2002). PubMed

Kashatus D., Cogswell P. & Baldwin A. S. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 20, 225–235 (2006). PubMed PMC

Busuttil V. et al.. NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc. Natl. Acad. Sci. USA 107, 18061–6 (2010). PubMed PMC

Kubbutat M. H., Ludwig R. L., Levine a. J. & Vousden K. H. Analysis of the degradation function of Mdm2. Cell Growth Differ. 10, 87–92 (1999). PubMed

Argentini M., Barboule N. & Wasylyk B. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability. Oncogene 20, 1267–75 (2001). PubMed

Blattner C., Hay T., Meek D. W. & Lane D. P. Hypophosphorylation of Mdm2 augments p53 stability. Mol. Cell. Biol. 22, 6170–6182 (2002). PubMed PMC

Kawai H., Wiederschain D. & Yuan Z. Critical Contribution of the MDM2 Acidic Domain to p53 Ubiquitination. Mol. Cell. Biol. 23, 4939–4947 (2003). PubMed PMC

Dolezelova P., Cetkovska K., Vousden K. H. & Uldrijan S. Mutational analysis reveals a dual role of Mdm2 acidic domain in the regulation of p53 stability. FEBS Lett. 586, 2225–2231 (2012). PubMed

Kulikov R. et al.. Mdm2 facilitates the association of p53 with the proteasome. Proc. Natl. Acad. Sci. USA 107, 10038–43 (2010). PubMed PMC

Leslie P. L., Ke H. & Zhang Y. The MDM2 RING Domain and Central Acidic Domain Play Distinct Roles in MDM2 Protein Homodimerization and MDM2-MDMX Protein Heterodimerization. J. Biol. Chem. 290, 12941–12950 (2015). PubMed PMC

Huang W. C., Ju T. K., Hung M. C. & Chen C. C. Phosphorylation of CBP by IKKa Promotes Cell Growth by Switching the Binding Preference of CBP from p53 to NF-kB. Mol. Cell 26, 75–87 (2007). PubMed PMC

Heyne K., Winter C., Gerten F., Schmidt C. & Roemer K. A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 12, 2479–2492 (2013). PubMed PMC

Harhaj E. W. & Dixit V. M. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 21, 22–39 (2011). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...