Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
28353647
PubMed Central
PMC5412315
DOI
10.3390/ijms18040729
PII: ijms18040729
Knihovny.cz E-resources
- Keywords
- breast cancer, copper, proteasome, reactive oxygen species, wedelolactone,
- MeSH
- Proteasome Inhibitors chemistry pharmacology toxicity MeSH
- Coumarins chemistry pharmacology toxicity MeSH
- Humans MeSH
- Copper metabolism MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms metabolism MeSH
- Proteasome Endopeptidase Complex chemistry metabolism MeSH
- Proteolysis MeSH
- Reactive Oxygen Species metabolism MeSH
- Molecular Docking Simulation MeSH
- Ubiquitination MeSH
- Protein Binding MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Proteasome Inhibitors MeSH
- Coumarins MeSH
- Copper MeSH
- Proteasome Endopeptidase Complex MeSH
- Reactive Oxygen Species MeSH
- wedelolactone MeSH Browser
Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.
See more in PubMed
Groll M., Heinemeyer W., Jäger S., Ullrich T., Bochtler M., Wolf D.H., Huber R. The catalytic sites of 20S proteasomes and their role in subunit maturation: A mutational and crystallographic study. Proc. Natl. Acad. Sci. USA. 1999;96:10976–10983. doi: 10.1073/pnas.96.20.10976. PubMed DOI PMC
Heinemeyer W., Fischer M., Krimmer T., Stachon U., Wolf D.H. The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 1997;272:25200–25209. doi: 10.1074/jbc.272.40.25200. PubMed DOI
Shen M., Schmitt S., Buac D., Duo Q.P. Targeting the ubiquitin–proteasome system for cancer therapy. Expert Opin. Ther. Targets. 2013;17:1091–1108. doi: 10.1517/14728222.2013.815728. PubMed DOI PMC
Groll M., Huber R. Purification, crystallization, and X-ray analysis of the yeast 20S proteasome. Methods Enzymol. 2005;398:329–336. PubMed
Grigoreva T.A., Tribulovich V.G., Garabadzhiu A.V., Melino G., Barlev N.A. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget. 2015;6:24733–24749. doi: 10.18632/oncotarget.4619. PubMed DOI PMC
Crawford L.J., Walker B., Irvine A.E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 2011;5:101–110. PubMed PMC
Arlt A., Bauer I., Schafmayer C., Tepel J., Müerköster S.S., Brosch M., Röder C., Kalthoff H., Hampe J., Moyer M.P., et al. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2) Oncogene. 2009;28:3983–3996. doi: 10.1038/onc.2009.264. PubMed DOI
Rajkumar S.V., Richardson P.G., Hideshima T., Anderson K.C. Proteasome Inhibition As a Novel Therapeutic Target in Human Cancer. J. Cell. Oncol. 2005;23:630–639. doi: 10.1200/JCO.2005.11.030. PubMed DOI
Kubiczkova L., Pour L., Sedlarikova L., Hajek R., Sevcikova S. Proteasome inhibitors—Molecular basis and current perspectives in multiple myeloma. J. Cell. Mol. Med. 2014;18:947–961. doi: 10.1111/jcmm.12279. PubMed DOI PMC
Kisselev A.F., van der Linden W.A., Overkleeft H.S. Proteasome inhibitors: An expanding army attacking a unique target. Chem. Biol. 2012;19:99–115. doi: 10.1016/j.chembiol.2012.01.003. PubMed DOI PMC
Wagner H., Geyer B., Kiso Y., Hikino H., Rao G.S. Coumestans as the main active principles of the liver drugs Eclipta alba and Wedelia calendulacea. Planta Med. 1986;5:370–374. doi: 10.1055/s-2007-969188. PubMed DOI
Benes P., Knopfova L., Trcka F., Nemajerova A., Pinheiro D., Soucek K., Fojta M., Smarda J. Inhibition of topoisomerase IIα: Novel function of wedelolactone. Cancer Lett. 2011;303:29–38. doi: 10.1016/j.canlet.2011.01.002. PubMed DOI
Chen Z., Sun X., Shen S., Zhang H., Ma X., Liu J., Kuang S., Yu Q. Wedelolactone a naturally occurring coumestan, enhances interferon-G signaling through inhibiting STAT1 protein dephosphorylation. J. Biol. Chem. 2013;288:14417–14427. doi: 10.1074/jbc.M112.442970. PubMed DOI PMC
Idris A.I., Libouban H., Nyangoga H., Landao-Bassonga E., Chappard D., Ralston S.H. Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo. Mol. Cancer Ther. 2009;8:2339–2347. doi: 10.1158/1535-7163.MCT-09-0133. PubMed DOI
Lin F.M., Chen L.R., Lin E.H., Ke F.C., Chen H.Y., Tsai M.J., Hsiao P.W. Compounds from Wedelia chinensis synergistically suppress androgen activity and growth in prostate cancer cells. Carcinogenesis. 2007;28:2521–2529. doi: 10.1093/carcin/bgm137. PubMed DOI
Nehybova T., Smarda J., Benes P. Plant coumestans: Recent advances and future perspectives in cancer therapy. Anticancer Agents Med. Chem. 2014;14:1351–1362. doi: 10.2174/1871520614666140713172949. PubMed DOI
Sukumari-Ramesh S., Bentley J.N., Laird M.D., Singh N., Vender J.R., Dhandapani K.M. Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int. J. Dev. Neurosci. 2011;29:701–710. doi: 10.1016/j.ijdevneu.2011.06.002. PubMed DOI PMC
Tsai C.H., Lin F.M., Yang Y.C., Lee M.T., Cha T.L., Wu G.J., Hsieh S.C., Hsiao P.W. Herbal extract of Wedelia chinensis attenuates androgen receptor activity and orthotopic growth of prostate cancer in nude mice. Clin. Cancer Res. 2009;15:5435–5444. doi: 10.1158/1078-0432.CCR-09-0298. PubMed DOI
Vender J.R., Laird M.D., Dhandapani K.M. Inhibition of NFκB reduces cellular viability in GH3 pituitary adenoma cells. Neurosurgery. 2008;62:1122–1127. doi: 10.1227/01.neu.0000325874.82999.75. PubMed DOI
Sarveswaran S., Gautam S.C., Ghosh J. Wedelolactone a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCe without inhibiting Akt. Int. J. Oncol. 2012;41:2191–2199. PubMed PMC
Sarweswaran S., Ghosh R., Parikh R., Ghosh J. Wedelolactone, an Anti-inflammatory Botanical, Interrupts c-Myc Oncogenic Signaling and Synergizes with Enzalutamide to Induce Apoptosis in Prostate Cancer Cells. Mol. Cancer Ther. 2016;15:2791–2801. doi: 10.1158/1535-7163.MCT-15-0861. PubMed DOI PMC
Benes P., Alexova P., Knopfova L., Spanova A., Smarda J. Redox state alters anti-cancer effects of wedelolactone. Environ. Mol. Mutagen. 2012;53:515–524. doi: 10.1002/em.21712. PubMed DOI
Daniel K.G., Gupta P., Harbach R.H., Guida W.C., Dou Q.P. Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem. Pharmacol. 2004;67:1139–1151. doi: 10.1016/j.bcp.2003.10.031. PubMed DOI
Ding W.Q., Liu B., Vaught J.L., Yamauchi H., Lind S.E. Anticancer activity of the antibiotic clioquinol. Cancer Res. 2005;65:3389–3395. PubMed
Arif H., Rehmani N., Farhan M., Ahmad A., Hadi S.M. Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study. Int. J. Mol. Sci. 2015;16:26754–26769. doi: 10.3390/ijms161125992. PubMed DOI PMC
Farhan M., Khan H.Y., Oves M., Al-Harrasi A., Rehmani N., Arif H., Hadi S.M., Ahmad A. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species. Toxins. 2016;8:37. doi: 10.3390/toxins8020037. PubMed DOI PMC
Khan H.Y., Zubair H., Faisal M., Ullah M.F., Farhan M., Sarkar F.H., Ahmad A., Hadi S.M. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action. Mol. Nutr. Food Res. 2014;58:437–446. doi: 10.1002/mnfr.201300417. PubMed DOI
Zafar A., Singh S., Naseem I. Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7 cells: Insights into the molecular mechanism. Food Chem. Toxicol. 2017;99:149–161. doi: 10.1016/j.fct.2016.11.034. PubMed DOI
Zhou Z.D., Lim T.M. Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic. Res. 2009;43:417–430. doi: 10.1080/10715760902801533. PubMed DOI
Adams J. The proteasome: Structure, function, and role in the cell. Cancer Treat. Rev. 2003;29:3–9. doi: 10.1016/S0305-7372(03)00081-1. PubMed DOI
Moore B.S., Eustáquio A.S., McGlinchey R.P. Advances in and applications of proteasome inhibitors. Curr. Opin. Chem. Biol. 2008;12:434–440. doi: 10.1016/j.cbpa.2008.06.033. PubMed DOI PMC
Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 1995;7:215–223. doi: 10.1016/0955-0674(95)80031-X. PubMed DOI
Bae S.H., Ryoo H.M., Kim M.K., Lee K.H., Sin J.I., Hyun M.S. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapeutic agents in gastric cancer cell lines. Oncol. Rep. 2008;19:1027–1032. doi: 10.3892/or.19.4.1027. PubMed DOI
Nam S., Smith D.M., Dou P.D. Tannic Acid Potently Inhibits Tumor Cell Proteasome Activity, Increases p27 and Bax Expression, and Induces G1 Arrest and Apoptosis. Cancer Epidemiol. Biomark. Prev. 2001;10:1083–1088. PubMed
Yang H., Landis-Piwowar K.R., Chen D., Milacic V., Dou Q.P. Natural Compounds with Proteasome Inhibitory Activity for Cancer Prevention and Treatment. Curr. Protein Pept. Sci. 2008;9:227–239. doi: 10.2174/138920308784533998. PubMed DOI PMC
Lee J., Peña M.M., Nose Y., Thiele D.J. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 2002;277:4380–4387. doi: 10.1074/jbc.M104728200. PubMed DOI
Nehybova T., Smarda J., Daniel L., Brezovsky J., Benes P. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling. J. Steroid. Biochem. Mol. Biol. 2015;152:76–83. PubMed
Jancekova B., Ondrouskova E., Knopfova L., Smarda J., Benes P. Enzymatically active cathepsin D sensitizes breast carcinoma cells to TRAIL. Tumour Biol. 2016;37:10685–10696. doi: 10.1007/s13277-016-4958-5. PubMed DOI
Navratilova J., Hankeova T., Benes P., Smarda J. Acidic pH of tumor microenvironment enhances cytotoxicity of the disulfiram/Cu2+ complex to breast and colon cancer cells. Chemotherapy. 2013;59:112–120. doi: 10.1159/000353915. PubMed DOI
Pes O., Jungova P., Vyhnanek R., Vaculovic T., Kanicky V., Preisler J. Off-line coupling of capillary electrophoresis to substrate-assisted laser desorption inductively coupled plasma mass spectrometry. Anal. Chem. 2008;80:8725–8732. doi: 10.1021/ac801036x. PubMed DOI
Irwin J.J., Shoichet B.K. ZINC—A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005;45:177–182. doi: 10.1021/ci049714+. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Sanner M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999;17:57–61. PubMed
Delano W.T. The PyMol Molecular Graphics System, Version 1.5. Schrödinger, LLC; New York, NY, USA: 2009.
Durrant J., McCammon J. NNScore 2.0: A Neural-Network Receptor-ligand Scoring Function. J. Chem. Inf. Model. 2011;51:2897–2903. doi: 10.1021/ci2003889. PubMed DOI PMC