Biobanking strategy and sample preprocessing for integrative research in monoclonal gammopathies

. 2017 Oct ; 70 (10) : 847-853. [epub] 20170330

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28360189
Odkazy

PubMed 28360189
PubMed Central PMC5749344
DOI 10.1136/jclinpath-2017-204329
PII: jclinpath-2017-204329
Knihovny.cz E-zdroje

AIMS: Some types of monoclonal gammopathies are typified by a very limited availability of aberrant cells. Modern research use high throughput technologies and an integrated approach for detailed characterisation of abnormal cells. This strategy requires relatively high amounts of starting material which cannot be obtained from every diagnosis without causing inconvenience to the patient. The aim of this methodological paper is to reflect our long experience with laboratory work and describe the best protocols for sample collection, sorting and further preprocessing in terms of the available number of cells and intended downstream application in monoclonal gammopathies research. Potential pitfalls are also discussed. METHODS: Comparison and optimisation of freezing and sorting protocols for plasma cells in monoclonal gammopathies, followed by testing of various nucleic acid isolation and amplification techniques to establish a guideline for sample processing in haemato-oncology research. RESULTS: We show the average numbers of aberrant cells that can be obtained from various monoclonal gammopathies (monoclonal gammopathy of undetermined significance/light chain amyloidosis/multiple myeloma (MM)/MM circulating plasma cells/ minimal residual disease MM-10 123/22 846/305 501/68 641/4000 aberrant plasma cells of 48/30/10/16/37×106 bone marrow mononuclear cells) and the expected yield of nucleic acids provided from multiple isolation kits (DNA/RNA yield from 1 to 200×103 cells was 2.14-427/0.12-123 ng). CONCLUSIONS: Tested kits for parallel isolation deliver outputs comparable with kits specialised for just one type of molecule. We also present our positive experience with the whole genome amplification method, which can serve as a very powerful tool to gain complex information from a very small cell population.

Zobrazit více v PubMed

San-Miguel JF, Mateos MV. Can multiple myeloma become a curable disease? Haematologica 2011;96:1246–8. PubMed PMC

Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015;125:3059–68. 10.1182/blood-2014-11-568907 PubMed DOI PMC

Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015;125:3049–58. 10.1182/blood-2014-11-568881 PubMed DOI PMC

Rasmussen SM, Bilgrau AE, Schmitz A, et al. . Stable phenotype of B-cell subsets following cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank. Cytometry B Clin Cytom 2015;88:40–9. 10.1002/cyto.b.21192 PubMed DOI

Paiva B, Vidriales M-B, Cervero J, et al. . Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008;112:4017–23. 10.1182/blood-2008-05-159624 PubMed DOI PMC

Perez-Persona E, Vidriales M-B, Mateo G, et al. . New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007;110:2586–92. 10.1182/blood-2007-05-088443 PubMed DOI

Babayan A, Alawi M, Gormley M, et al. . Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget 2017;8:56066–80. PubMed PMC

Korfhage C, Fricke E, Meier A. Parallel WGA and WTA for comparative genome and transcriptome NGS analysis using tiny cell numbers. Curr Protoc Mol Biol 2015;111:7.19.1–18. 10.1002/0471142727.mb0719s111 PubMed DOI

de Bourcy CFA, De Vlaminck I, Kanbar JN, et al. . A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE 2014;9:e105585 10.1371/journal.pone.0105585 PubMed DOI PMC

Mikulasova A, Smetana J, Wayhelova M, et al. . Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol 2016;97:568–75. 10.1111/ejh.12774 PubMed DOI

Keats JJ, Chesi M, Egan JB, et al. . Clonal competition with alternating dominance in multiple myeloma. Blood 2012;120:1067–76. 10.1182/blood-2012-01-405985 PubMed DOI PMC

Hu Y, Wang M, Chen Y, et al. . Immunophenotypic analysis of abnormal plasma cell clones in bone marrow of primary systemic light chain amyloidosis patients. Chin Med J (Engl) 2014;127:2765–70. PubMed

Paiva B, Merino J, San Miguel JF. Utility of flow cytometry studies in the management of patients with multiple myeloma. Curr Opin Oncol 2016;28:511–17. 10.1097/CCO.0000000000000331 PubMed DOI

Reid S, Yang S, Brown R, et al. . Characterisation and relevance of CD138-negative plasma cells in plasma cell myeloma. Int J Lab Hematol 2010;32(Pt 1):e190–6. 10.1111/j.1751-553X.2010.01222.x PubMed DOI

Riegman PHJ, Morente MM, Betsou F, et al. . Biobanking for better healthcare. Mol Oncol 2008;2:213–22. 10.1016/j.molonc.2008.07.004 PubMed DOI PMC

Cumova J, Kovarova L, Potacova A, et al. . Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. Int J Hematol 2010;92:314–19. 10.1007/s12185-010-0651-4 PubMed DOI

Buresova I, Cumova J, Kovarova L, et al. . Bone marrow plasma cell separation—validation of separation algorithm. Clin Chem Lab Med 2012;50:1139–40. 10.1515/cclm-2012-8837 PubMed DOI

Davies D. Cell separations by flow cytometry. Methods Mol Biol 2012;878:185–99. 10.1007/978-1-61779-854-2_12 PubMed DOI

Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab 2016;4:4 10.1186/s40170-016-0143-y PubMed DOI PMC

Auer H, Lyianarachchi S, Newsom D, et al. . Chipping away at the chip bias: RNA degradation in microarray analysis. Nat Genet 2003;35:292–3. 10.1038/ng1203-292 PubMed DOI

Iglesias-Ussel M, Marchionni L, Romerio F. Isolation of microarray-quality RNA from primary human cells after intracellular immunostaining and fluorescence-activated cell sorting. J Immunol Methods 2013;391:22–30. 10.1016/j.jim.2013.02.003 PubMed DOI PMC

Hrvatin S, Deng F, O'Donnell CW, et al. . MARIS: method for analyzing RNA following intracellular sorting. PLoS ONE 2014;9:e89459 10.1371/journal.pone.0089459 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace