Biobanking strategy and sample preprocessing for integrative research in monoclonal gammopathies
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28360189
PubMed Central
PMC5749344
DOI
10.1136/jclinpath-2017-204329
PII: jclinpath-2017-204329
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, HAEMATO-ONCOLOGY, METHODOLOGY, MYELOMA,
- MeSH
- DNA izolace a purifikace MeSH
- konzervace krve metody MeSH
- krevní bankovnictví metody MeSH
- kryoprezervace metody MeSH
- lidé MeSH
- odběr vzorku krve metody MeSH
- paraproteinemie krev MeSH
- reagenční diagnostické soupravy MeSH
- RNA izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- reagenční diagnostické soupravy MeSH
- RNA MeSH
AIMS: Some types of monoclonal gammopathies are typified by a very limited availability of aberrant cells. Modern research use high throughput technologies and an integrated approach for detailed characterisation of abnormal cells. This strategy requires relatively high amounts of starting material which cannot be obtained from every diagnosis without causing inconvenience to the patient. The aim of this methodological paper is to reflect our long experience with laboratory work and describe the best protocols for sample collection, sorting and further preprocessing in terms of the available number of cells and intended downstream application in monoclonal gammopathies research. Potential pitfalls are also discussed. METHODS: Comparison and optimisation of freezing and sorting protocols for plasma cells in monoclonal gammopathies, followed by testing of various nucleic acid isolation and amplification techniques to establish a guideline for sample processing in haemato-oncology research. RESULTS: We show the average numbers of aberrant cells that can be obtained from various monoclonal gammopathies (monoclonal gammopathy of undetermined significance/light chain amyloidosis/multiple myeloma (MM)/MM circulating plasma cells/ minimal residual disease MM-10 123/22 846/305 501/68 641/4000 aberrant plasma cells of 48/30/10/16/37×106 bone marrow mononuclear cells) and the expected yield of nucleic acids provided from multiple isolation kits (DNA/RNA yield from 1 to 200×103 cells was 2.14-427/0.12-123 ng). CONCLUSIONS: Tested kits for parallel isolation deliver outputs comparable with kits specialised for just one type of molecule. We also present our positive experience with the whole genome amplification method, which can serve as a very powerful tool to gain complex information from a very small cell population.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Haemato oncology University Hospital Ostrava Ostrava Czech Republic
Faculty of Medicine University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
San-Miguel JF, Mateos MV. Can multiple myeloma become a curable disease? Haematologica 2011;96:1246–8. PubMed PMC
Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015;125:3059–68. 10.1182/blood-2014-11-568907 PubMed DOI PMC
Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015;125:3049–58. 10.1182/blood-2014-11-568881 PubMed DOI PMC
Rasmussen SM, Bilgrau AE, Schmitz A, et al. . Stable phenotype of B-cell subsets following cryopreservation and thawing of normal human lymphocytes stored in a tissue biobank. Cytometry B Clin Cytom 2015;88:40–9. 10.1002/cyto.b.21192 PubMed DOI
Paiva B, Vidriales M-B, Cervero J, et al. . Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 2008;112:4017–23. 10.1182/blood-2008-05-159624 PubMed DOI PMC
Perez-Persona E, Vidriales M-B, Mateo G, et al. . New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007;110:2586–92. 10.1182/blood-2007-05-088443 PubMed DOI
Babayan A, Alawi M, Gormley M, et al. . Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget 2017;8:56066–80. PubMed PMC
Korfhage C, Fricke E, Meier A. Parallel WGA and WTA for comparative genome and transcriptome NGS analysis using tiny cell numbers. Curr Protoc Mol Biol 2015;111:7.19.1–18. 10.1002/0471142727.mb0719s111 PubMed DOI
de Bourcy CFA, De Vlaminck I, Kanbar JN, et al. . A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE 2014;9:e105585 10.1371/journal.pone.0105585 PubMed DOI PMC
Mikulasova A, Smetana J, Wayhelova M, et al. . Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol 2016;97:568–75. 10.1111/ejh.12774 PubMed DOI
Keats JJ, Chesi M, Egan JB, et al. . Clonal competition with alternating dominance in multiple myeloma. Blood 2012;120:1067–76. 10.1182/blood-2012-01-405985 PubMed DOI PMC
Hu Y, Wang M, Chen Y, et al. . Immunophenotypic analysis of abnormal plasma cell clones in bone marrow of primary systemic light chain amyloidosis patients. Chin Med J (Engl) 2014;127:2765–70. PubMed
Paiva B, Merino J, San Miguel JF. Utility of flow cytometry studies in the management of patients with multiple myeloma. Curr Opin Oncol 2016;28:511–17. 10.1097/CCO.0000000000000331 PubMed DOI
Reid S, Yang S, Brown R, et al. . Characterisation and relevance of CD138-negative plasma cells in plasma cell myeloma. Int J Lab Hematol 2010;32(Pt 1):e190–6. 10.1111/j.1751-553X.2010.01222.x PubMed DOI
Riegman PHJ, Morente MM, Betsou F, et al. . Biobanking for better healthcare. Mol Oncol 2008;2:213–22. 10.1016/j.molonc.2008.07.004 PubMed DOI PMC
Cumova J, Kovarova L, Potacova A, et al. . Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. Int J Hematol 2010;92:314–19. 10.1007/s12185-010-0651-4 PubMed DOI
Buresova I, Cumova J, Kovarova L, et al. . Bone marrow plasma cell separation—validation of separation algorithm. Clin Chem Lab Med 2012;50:1139–40. 10.1515/cclm-2012-8837 PubMed DOI
Davies D. Cell separations by flow cytometry. Methods Mol Biol 2012;878:185–99. 10.1007/978-1-61779-854-2_12 PubMed DOI
Buescher JM, Driggers EM. Integration of omics: more than the sum of its parts. Cancer Metab 2016;4:4 10.1186/s40170-016-0143-y PubMed DOI PMC
Auer H, Lyianarachchi S, Newsom D, et al. . Chipping away at the chip bias: RNA degradation in microarray analysis. Nat Genet 2003;35:292–3. 10.1038/ng1203-292 PubMed DOI
Iglesias-Ussel M, Marchionni L, Romerio F. Isolation of microarray-quality RNA from primary human cells after intracellular immunostaining and fluorescence-activated cell sorting. J Immunol Methods 2013;391:22–30. 10.1016/j.jim.2013.02.003 PubMed DOI PMC
Hrvatin S, Deng F, O'Donnell CW, et al. . MARIS: method for analyzing RNA following intracellular sorting. PLoS ONE 2014;9:e89459 10.1371/journal.pone.0089459 PubMed DOI PMC