Reactive oxygen species and antioxidant defense in human gastrointestinal diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28462126
PubMed Central
PMC5390420
DOI
10.1016/j.imr.2016.07.004
PII: S2213-4220(16)30082-8
Knihovny.cz E-zdroje
- Klíčová slova
- Crohn's disease, antioxidant enzymes, inflammatory bowel diseases, pediatric patients, radicals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Crohn's disease and ulcerative colitis, known together as inflammatory bowel diseases (IBDs), and celiac disease are the most common disorders affecting not only adults but also children. Both IBDs and celiac disease are associated with oxidative stress, which may play a significant role in their etiologies. Reactive oxygen species (ROS) such as superoxide radicals (O2•-), hydroxyl radicals (•OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2) are responsible for cell death via oxidation of DNA, proteins, lipids, and almost any other cellular constituent. To protect biological systems from free radical toxicity, several cellular antioxidant defense mechanisms exist to regulate the production of ROS, including enzymatic and nonenzymatic pathways. Superoxide dismutase catalyzes the dismutation of O2•- to H2O2 and oxygen. The glutathione redox cycle involves two enzymes: glutathione peroxidase, which uses glutathione to reduce organic peroxides and H2O2; and glutathione reductase, which reduces the oxidized form of glutathione with concomitant oxidation of nicotinamide adenine dinucleotide phosphate. In addition to this cycle, GSH can react directly with free radicals. Studies into the effects of free radicals and antioxidant status in patients with IBDs and celiac disease are scarce, especially in pediatric patients. It is therefore very necessary to conduct additional research studies to confirm previous data about ROS status and antioxidant activities in patients with IBDs and celiac disease, especially in children.
Zobrazit více v PubMed
Sato H., Shibata H., Shimizu T., Shibata S., Toriumi H., Ebine T. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience. 2013;248:345–358. PubMed
Navarro-Yepes J., Zavala-Flores L., Anandhan A., Wang F., Skotak M., Chandra N. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther. 2014;142:206–230. PubMed PMC
Rajendran P., Nandakumar N., Rengarajan T., Palaniswami R., Gnanadhas E.N., Lakshminarasaiah U. Antioxidants and human diseases. Clin Chim Acta. 2014;436:332–347. PubMed
Wu J.Q., Kosten T.R., Zhang X.Y. Free radicals, antioxidant defense system, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:200–206. PubMed
Taniyama Y., Griendling K.K. Reactive oxygen species in the vasculature. Hypertension. 2003;42:1075–1081. PubMed
Fink M.P. Reactive oxygen species as mediators of organ dysfunction caused by sepsis, acute respiratory distress syndrome, or hemorrhagic shock: potential benefits of resuscitation with Ringer's ethyl pyruvate solution. Curr Clin Opin Nutr Metab Care. 2002;5:167–174. PubMed
Hansen J.M., Go Y.M., Jones D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signalling. Annu Rev Pharmacol Toxicol. 2006:215–234. PubMed
Glasauer A., Chandel N.S. Targeting antioxidants for cancer therapy. Biochem Pharmacol. 2014;92:90–101. PubMed
Al-Gubory K.H., Garrel C., Faure P., Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online. 2012;25:551–560. PubMed
Halliwell B. Antioxidant defence system mechanisms: from the beginning to the end (of beginning) Free Radic Res. 1999;31:261–272. PubMed
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–930. PubMed
Ushio-Fukai M., Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266:37–52. PubMed PMC
Griendling K.K., Minieri C.A., Ollerenshaw J.D., Alexander R.W. Angiotensin I stimulates NADH and NADPH oxidasae activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–1148. PubMed
George J., Struthers A.D. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5:265–272. PubMed PMC
Pacher P., Nivorozhkin A., Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58:87–114. PubMed PMC
Stuehr D., Pou S., Rosen G.M. Oxygen reduction by nitric-oxide synthases. J Biol Chem. 2001;276:14533–14536. PubMed
Landmesser U., Dikalov S., Price S.R., McCann L., Fukai T., Holland S.M. Oxidation of tertrahydrobiopterin leads to uncoupling of endothelila cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201–1209. PubMed PMC
Winterbourn C.C., Vissers M.C., Kettle A.J. Myeloperoxidase. Curr Opin Hematol. 2000;7:53–58. PubMed
Eiserich J.P., Baldus S., Brennan M.L., Ma W., Zhang C., Tousson A. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–2394. PubMed
Gersch C., Palii S.P., Imaram W., Kim K.M., Karumanchi A., Angerhofer A. Reactions of peroxynitrite with uric acid. Formation of reactive intermaditaes, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress. Nucleoside Nucleotides Nucleic Acids. 2009;28:118–149. PubMed PMC
Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxinitrite in health and disease. Physiol Rev. 2007;87:315–424. PubMed PMC
Deponte M. Glutathione catalysis and the reaction mechanism of glutathione-dependent enzymes. Biochim Biophys Acta. 2013;1830:3217–3266. PubMed
Sindhi V., Gupta V., Sharma K., Bhatnagar S., Kumari R., Dhaka N. Potential applications of antioxidants — a review. J Pharm Res. 2013;7:828–835.
Glasauer A., Chandel N.S. Targeting antioxidants for cancer therapy. Biochem Pharmacol. 2014;2:90–101. PubMed
Abreu I.A., Cabelli D.E. Superoxide dismutases — a review of the metal-associated mechanistic variations. Biochim Biophys Acta. 2010;1804:263–274. PubMed
Bonini M.G., Gabel S.A., Ranguelova K., Stadler K., Derose E.F., London R.E. Direct magnetic resonance evidence for peroxymonocarbonate involvement in the Cu, Zn-superoxide dismutase peroxidase catalytic cycle. J Biol Chem. 2009;284:14618–14627. PubMed PMC
Hough M.A., Hasnain S.S. Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 A. Structure. 2003;11:937–946. PubMed
Aksoy Y., Balk M., Ogus H., Ozer N. The mechanism of inhibition of human erythrocyte catalase by azide. Turk J Biol. 2004;28:65–70.
Gamain B., Arnaud J., Favier A., Camus D., Dive D., Slomianny C. Increase in glutathione peroxidase activity in malaria parasite after selenium supplementation. Free Radic Biol Med. 1996;21:559–565. PubMed
Arthur J.R. The glutathione peroxidases. Cell Mol Life Sci. 2000;57:1825–1835. PubMed PMC
Goyal M.M., Basal A. Hydroxyl radical generation theory: a possible explanation of unexplained actions of mammalian catalase. Int J Biochem Mol Biol. 2012;3:282–289. PubMed PMC
Chakravarti R., Gupta K., Majors A., Ruple L., Aronica M., Stuehr D.J. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1. Free Radic Biol Med. 2015;82:105–113. PubMed PMC
Kirkman H.N., Rolfo M., Ferraris A.M., Ferraris A.M., Gaetani G.F. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem. 1999;274:13908–13914. PubMed
Lardinois O.M., Rouxhet P.G. Peroxidatic degradation of azide by catalase and irreversible enzyme activation. Biochem Biophys Acta. 1996;1298:180–190. PubMed
Putnam C.H.D., Arvai A.S., Bourne Y., Tainer J.A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol. 2000;296:295–309. PubMed
Hayes J.D., Mclellan L.I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999;31:273–300. PubMed
Arner E.S. Selenoproteins — what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res. 2010;316:1296–1303. PubMed
Aprioku J.S. Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil. 2013;14:158–172. PubMed PMC
Paiva C.N., Bozza M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal. 2014;20:1001–1012. PubMed PMC
Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004;164:1875–1882. PubMed PMC
Reis K.A., Guz G., Ozdemir H., Erten Y., Atalay V., Bicik Z. Intravenous iron therapy as a possible risk factor for atherosclerosis in end-stage renal disease. Int Heart J. 2005;46:255–264. PubMed
Bossmann S.H., Oliveros E., Kantor M., Niebler S., Bonfill A., Shahin N. New insights into the mechanisms of the thermal Fenton reactions occurring using different iron(II)-complexes. Water Sci Technol. 2004;49:75–80. PubMed
Bochi G.V., Torbitz V.D., Cargnin L.P., de Carvalho J.A., Gomes P., Moresco R.N. An alternative pathway through the Fenton reaction for the formation of advanced oxidation protein products, a new class of inflammatory mediators. Inflammation. 2014;37:512–521. PubMed
Lü J.M., Nurko J., Weakley S.M., Jiang J., Kougias P., Lin P.H. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Med Sci Monit. 2010;16:RA93–RA100. PubMed PMC
Galano A., Macías-Ruvalcaba N.A., Medina Campos O.N., Pedraza-Chaverri J. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: a combined theoretical and experimental study. J Phys Chem B. 2010;114:6625–6635. PubMed
Hwu J.R., Hsu C.I., Hsu M.H., Liang Y.C., Huang R.C., Lee Y.C. Glycosylated nordihydroguaiaretic acids as anti-cancer agents. Bioorg Med Chem Lett. 2011;21:380–382. PubMed
Jourd’heuil D., Jourd’heuil F.L., Kutchukian P.S., Musah R.A., Wink D.A., Grisham M.B. Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J Biol Chem. 2001;276:28799–28805. PubMed
Coddington J.W., Hurst J.K., Lymar S.V. Hydroxy radical formation during peroxinotrous acid decomposition. J Am Chem Soc. 1999;121:2438–2443.
Goldstein S., Czapski G. Reactivity of peroxinitrite versus simultaneous generation of (*) NO and O(2) (*) (–) toward NADH. Chem Res Toxicol. 2000;13:736–741. PubMed
Kuzkaya N., Weissmann N., Harrison D.G., Dikalo S. Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol. 2005;70:343–354. PubMed
Jozefczak M., Remans T., Vangronsveld J., Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 2012;13:3145–3175. PubMed PMC
Ribeiro M., Rosenstock T.R., Cunha-Oliveira T., Ferreira L.I., Oliveira C.R., Rego A.C. Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2012;53:1857–1867. PubMed
Townsend D.M., Tew K.D., Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57:145–155. PubMed PMC
Dickinson D.A., Forman H.J. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002;64:1019–1026. PubMed
Wu G., Fang Y.Z., Yang S., Luoton J.R., Turner N.D. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–492. PubMed
Ballatori N., Krance S.M., Notenboom S., Shi S., Tieu K., Hammond C.H.L. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390:191–214. PubMed PMC
Yan J., Ralston M.M., Meng X., Bongiovanni K.D., Jones A.L., Benndorf R. Glutathione reductase is essential for host defense against bacterial infection. Free Radic Biol Med. 2013;61:320–332. PubMed PMC
Berkholz D.S., Faber H.R., Savvides S.N., Karplus P.A. Catalytic cycle of humane glutathione reductase near 1 A resolution. J Mol Biol. 2008;382:371–384. PubMed PMC
Outten C.E., Cullota V.C. Alternative start sites in Sacharomycetes cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem. 2004;279:7785–7791. PubMed PMC
Lesgards J.F., Gauthier C., Iovanna J., Vidal N., Dolla A., Stocker P. Effect of reactive oxygen and carbonyl species on crucial cellular antioxidant enzymes. Chem Biol Interact. 2011;190:28–34. PubMed
Hadjigogos K. The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med. 2003;45:7–13. PubMed
Rasheed Z. Hydroxyl radical damaged Immunoglobulin G in patients with rheumatoid arthritis: biochemical and immunological studies. Clin Biochem. 2008;41:663–669. PubMed
Sun Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med. 1990;8:583–599. PubMed
Colis L.C., Raychaudhury P., Basu A.K. Mutational specificity of γ-radiation-induced guanine–thymine and thymine–guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine–thymine lesion by human DNA polymerase η. Biochemistry. 2008;47:8070–8079. PubMed PMC
Turko I.V., Marcondes S., Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circul Physiol. 2001;281:H2289–H2294. PubMed
Matough F.A., Budin S.B., Hamid Z.A., Alwahaibi N., Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12:5–18. PubMed PMC
Uttara B., Singh A.V., Zamboni P., Mahajan R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74. PubMed PMC
Murphy M.P., LeVine H. Alzheimer's disease and the β-amyloid peptide. J Alzheimers Dis. 2010;19:311. PubMed PMC
Stefanis L. α-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2:a009399. PubMed PMC
Yamato M., Kudo W., Shiba T., Yamada K.I., Watanabe T., Utsumi H. Determination of reactive oxygen species associated with the degeneration of dopaminergic neurons during dopamine metabolism. Free Radic Res. 2010;44:249–257. PubMed
van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta. 2011;1812:141–150. PubMed
Cantu-Medellin N., Kelley E.E. Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol. 2013;1:353–358. PubMed PMC
Kim Y.J., Kim E.H., Hahm K.B. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J Gastroenterol Hepatol. 2012;27:1004–1010. PubMed
Muriel P. Role of free radicals in liver diseases. Hepatol Int. 2009;3:526–536. PubMed PMC
Leung P.S., Chan Y.C. Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal. 2009;11:135–165. PubMed
Sreevalsan S., Safe S. Reactive oxygen species and colorectal cancer. Curr Colorectal Cancer Rep. 2013;9:350–357. PubMed PMC
Otamiri T., Sjödahl R. Oxygen radicals: their role in selected gastrointestinal disorders. Dig Dis. 1991;9:133–141. PubMed
Kraus T.A., Mayer L. Oral tolerance and inflammatory bowel disease. Curr Opin Gastroenterol. 2005;21:692–696. PubMed
Huang H., Vangay P., McKinlay C.H.E., Knights D. Multi-omics analysis of inflammatory bowel disease. Immunol Lett. 2014;162:62–68. PubMed
Sobczak M., Fabisiak A., Murawska N., Wesołowska E., Wierzbicka P., Wlazłowski M. Current overview of extrinsic and intrinsic factors in etiology and progression of inflammatory bowel diseases. Pharmacol Rep. 2014;66:766–775. PubMed
Jones-Hall Y.L., Grisham M.B. Imunopathological charakterization of selected mouse models of inflammatory bowel disease: comparison to human disease. Pathophysiology. 2014;21:267–288. PubMed
Bandzar S., Gupta S., Platt M.O. Crohn's disease. A review of treatment options and current research. Cell Immunol. 2013;286:45–52. PubMed
Ishihara T., Tanaka K., Tasaka Y., Namba T., Suzuki J., Ishihara T. Therapeutic effect of lecithinized superoxide dismutase against colitis. J Pharmacol Exp Ther. 2009;328:152–164. PubMed
Huang Y., Xiao S., Jiang Q. Role of Rho kinase signal pathway in inflammatory bowel disease. Int J Clin Exp Med. 2015;8:3089–3097. PubMed PMC
Grisham M.B., Granger D.N. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci. 1988;33:6S–15S. PubMed
Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–461. PubMed
Nathan C., Xie Q.W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994;269:13725–13728. PubMed
Kim K.M., Kim P.K.M., Kwon Y.G., Bai S.K., Nam W.D., Kim Y.M. Regulation of apoptosis by nitrosative stress. J Biochem Mol Biol. 2002;35:127–133. PubMed
Hori M., Nobe H., Horiguchi K., Ozaki H. MCP-1 targeting inhibits muscularis macrophage recruitment and intestinal smooth muscle dysfunction in colonic inflammation. Am J Physiol Cell Physiol. 2008;294:C391–C401. PubMed
Rumessen J.J. Ultrasctructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative colitis. Gastroenterology. 1996;111:1447–1455. PubMed
Wang X.Y., Zarate N., Soderholm J.D., Buorgeois J.M., Liu L.W., Huizinga J.D. Ultrasctructural injury to intersticial cells of Cajal and communication with mast cells in Crohn's disease. Neurogastroenterol Motil. 2007;19:349–364. PubMed
Mikkelsen H.B. Interstitial cells of Cajal, Macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J Cell Mol Med. 2010;14:818–832. PubMed PMC
Caughey G.H. Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol. 2011;716:212–234. PubMed PMC
Brazil J., Louis N., Parkos C. The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:1556–1565. PubMed PMC
Kawakami Y., Okada H., Murakami Y., Kawakami T., Ueda Y., Kunii D. Dietary intake, neutrophil fatty acid profile, serum antioxidant vitamins and oxygen radical absorbance capacity in patients with ulcerative colitis. J Nutr Sci Vitaminol. 2007;53:153–159. PubMed
Alzoghaibi M.A. Concepts of oxidative stress and antioxidant defense in Crohn's disease. World J Gastroenterol. 2013;19:6540–6547. PubMed PMC
Naito Y., Takagi T., Yoshikawa T. Neutrophil-dependent oxidative stress in ulcerative colitis. J Clin Biochem Nutr. 2007;41:18–26. PubMed PMC
Taylor-Clark T.E. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium. 2016 PubMed PMC
Ogawa N., Kurokawa T., Mori Y. Sensing of redox status by TRP channels. Cell Calcium. 2016 PubMed
Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol. 2011;12:24–34. PubMed PMC
Lakhan S.E., Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation. 2010;7:37. PubMed PMC
Lubos E., Loscalzo J., Handy D. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15:1957–1997. PubMed PMC
Piechota-Polanczyk A., Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:605–620. PubMed PMC
Auli M., Nasser Y., Ho W., Burgueno J.F., Keenan C.M., Romero C. Neuromuscular changes in a rat model of colitis. Auton Neurosci. 2008;141:10–21. PubMed
De Giorgio R., Guerrini S., Barbara G., Staghellini V., de Ponti F., Corinaldesi R. Inflammatory neuropathies of the enteric nervous system. Gastroenterology. 2004;126:1872–1883. PubMed
Sanovic S., Lamb D.P., Blennerhassett M.G. Damage to the enteric nervous system in experimental colitis. Am J Pathol. 1999;155:1051–1057. PubMed PMC
Choi K.M., Gibbons S.J., Nguyen T.V., Stolz G.I., Lurken M.S., Ordög T. Heme oxygenase-1 protects intersticial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology. 2008;135:2055–2064. PubMed PMC
Zarate N., Wang X.Y., Tougas G., Anvari M., Birch D., Mearin F. Intramuscular intersticial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol Motil. 2006;18:556–568. PubMed
Oliveira S., Queiroga C.S., Vieira H.L. Mitochondria and carbon monoxide: cytoprotection and control of cell metabolism – a role for Ca2+? J Physiol. 2016;594:4131–4138. PubMed PMC
Lauret E., Rodrigo L. Celiac disease and autoimmune-associated conditions. Biomed Res Int. 2013;2013:127589. PubMed PMC
Ferretti G., Bacchetti T., Masciangelo S., Saturni L. Celiac disease, inflammation and oxidative damage: a nutrigenetic approach. Nutrients. 2012;4:243–257. PubMed PMC
Stojiljković V., Todorović A., Pejić S., Kasapović J., Saicić Z.S., Radlović N. Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease. Clin Biochem. 2009;42:1431–1437. PubMed
Stazi A.V., Trinti B. Selenium deficiency in celiac disease: risk of autoimmune thyroid diseases. Minerva Med. 2008;99:643–653. PubMed
Stojiljković V., Todorović A., Radlović N., Pejić S., Mladenović M., Kasapović J. Antioxidant enzymes, glutathione and lipid peroxidation in peripheral blood of children affected by coeliac disease. Ann Clin Biochem. 2007;44:537–543. PubMed
Pascual V., Dieli-Crimi R., López-Palacios N., Bodas A., Medrano L.M., Núñez C. Inflammatory bowel disease and celiac disease: overlaps and differences. World J Gastroenterol. 2014;20:4846–4856. PubMed PMC
Stojiljković V., Pejić S., Kasapović J., Gavrilović L., Stojiljković S., Nikolić D. Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients. An Acad Bras Cienc. 2012;84:75–84. PubMed
Boda M., Németh I., Boda D. The caffeine metabolic ratio as an index of xanthine oxidase activity in clinically active and silent celiac patients. J Pediatr Gastroenterol Nutr. 1999;29:546–550. PubMed
Pavlick K.P., Laroux F.S., Fuseler J., Wolf R.E., Gray L., Hoffman J. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med. 2002;33:311–322. PubMed
Hoffenberg E.J., Deutsch J., Smith S., Sokol R.J. Circulating antioxidant concentrations in children with inflammatory bowel disease. Am J Clin Nutr. 1997;65:1482–1488. PubMed