On the effects of multimodal information integration in multitasking
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28687804
PubMed Central
PMC5501795
DOI
10.1038/s41598-017-04828-w
PII: 10.1038/s41598-017-04828-w
Knihovny.cz E-zdroje
- MeSH
- akustická stimulace MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- lidé MeSH
- mapování mozku MeSH
- mladiství MeSH
- motorické korové centrum anatomie a histologie diagnostické zobrazování fyziologie MeSH
- plnění a analýza úkolů MeSH
- pozornost fyziologie MeSH
- prefrontální mozková kůra anatomie a histologie diagnostické zobrazování fyziologie MeSH
- psychomotorický výkon fyziologie MeSH
- rozpoznávání fyziologické * MeSH
- světelná stimulace MeSH
- zrakové korové centrum anatomie a histologie diagnostické zobrazování fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There have recently been considerable advances in our understanding of the neuronal mechanisms underlying multitasking, but the role of multimodal integration for this faculty has remained rather unclear. We examined this issue by comparing different modality combinations in a multitasking (stop-change) paradigm. In-depth neurophysiological analyses of event-related potentials (ERPs) were conducted to complement the obtained behavioral data. Specifically, we applied signal decomposition using second order blind identification (SOBI) to the multi-subject ERP data and source localization. We found that both general multimodal information integration and modality-specific aspects (potentially related to task difficulty) modulate behavioral performance and associated neurophysiological correlates. Simultaneous multimodal input generally increased early attentional processing of visual stimuli (i.e. P1 and N1 amplitudes) as well as measures of cognitive effort and conflict (i.e. central P3 amplitudes). Yet, tactile-visual input caused larger impairments in multitasking than audio-visual input. General aspects of multimodal information integration modulated the activity in the premotor cortex (BA 6) as well as different visual association areas concerned with the integration of visual information with input from other modalities (BA 19, BA 21, BA 37). On top of this, differences in the specific combination of modalities also affected performance and measures of conflict/effort originating in prefrontal regions (BA 6).
Department of Psychology University of Oslo Oslo Norway
Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
Zobrazit více v PubMed
Beste C, Yildiz A, Meissner TW, Wolf OT. Stress improves task processing efficiency in dual-tasks. Behav. Brain Res. 2013;252C:260–265. doi: 10.1016/j.bbr.2013.06.013. PubMed DOI
Wu C, Liu Y. Queuing network modeling of the psychological refractory period (PRP) Psychol. Rev. 2008;115:913–954. doi: 10.1037/a0013123. PubMed DOI
Yildiz A, Beste C. Parallel and serial processing in dual-tasking differentially involves mechanisms in the striatum and the lateral prefrontal cortex. Brain Struct. Funct. 2015;220:3131–3142. doi: 10.1007/s00429-014-0847-0. PubMed DOI
Gohil K, Stock A-K, Beste C. The importance of sensory integration processes for action cascading. Sci. Rep. 2015;5:9485. doi: 10.1038/srep09485. PubMed DOI PMC
Mückschel M, Stock A-K, Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N 1991. 2014;24:2120–2129. PubMed
Gohil K, Dippel G, Beste C. Questioning the role of the frontopolar cortex in multi-component behavior–a TMS/EEG study. Sci. Rep. 2016;6:22317. doi: 10.1038/srep22317. PubMed DOI PMC
Gohil K, Hahne A, Beste C. Improvements of sensorimotor processes during action cascading associated with changes in sensory processing architecture-insights from sensory deprivation. Sci. Rep. 2016;6:28259. doi: 10.1038/srep28259. PubMed DOI PMC
Göthe K, Oberauer K, Kliegl R. Eliminating dual-task costs by minimizing crosstalk between tasks: The role of modality and feature pairings. Cognition. 2016;150:92–108. doi: 10.1016/j.cognition.2016.02.003. PubMed DOI
Stock A-K, Gohil K, Beste C. Age-related differences in task goal processing strategies during action cascading. Brain Struct. Funct. 2015 PubMed
Hazeltine E, Ruthruff E. Modality pairing effects and the response selection bottleneck. Psychol. Res. 2006;70:504–513. doi: 10.1007/s00426-005-0017-3. PubMed DOI
Stelzel C, Schumacher EH, Schubert T, D’Esposito M. The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study. Psychol. Res. 2006;70:514–525. doi: 10.1007/s00426-005-0013-7. PubMed DOI
Stelzel C, Schubert T. Interference effects of stimulus-response modality pairings in dual tasks and their robustness. Psychol. Res. 2011;75:476–490. doi: 10.1007/s00426-011-0368-x. PubMed DOI
Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends Cogn. Sci. 2000;4:432–440. doi: 10.1016/S1364-6613(00)01545-X. PubMed DOI
Stock A-K, Arning L, Epplen JT, Beste C. DRD1 and DRD2 Genotypes Modulate Processing Modes of Goal Activation Processes during Action Cascading. J. Neurosci. 2014;34:5335–5341. doi: 10.1523/JNEUROSCI.5140-13.2014. PubMed DOI PMC
Verleger R, Jaśkowski P, Wascher E. Evidence for an integrative role of P3b in linking reaction to perception. J. Psychophysiol. 2005;19:165–181. doi: 10.1027/0269-8803.19.3.165. DOI
Huster RJ, Plis SM, Calhoun VD. Group-level component analyses of EEG: validation and evaluation. Front. Neurosci. 2015;9:254. doi: 10.3389/fnins.2015.00254. PubMed DOI PMC
Nunez PL, et al. EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 1997;103:499–515. doi: 10.1016/S0013-4694(97)00066-7. PubMed DOI
Winter WR, Nunez PL, Ding J, Srinivasan R. Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence. Stat. Med. 2007;26:3946–3957. doi: 10.1002/sim.2978. PubMed DOI
Eichele T, Rachakonda S, Brakedal B, Eikeland R, Calhoun VD. EEGIFT: group independent component analysis for event-related EEG data. Comput. Intell. Neurosci. 2011;2011:129365. doi: 10.1155/2011/129365. PubMed DOI PMC
Verbruggen F, Schneider DW, Logan GD. How to stop and change a response: the role of goal activation in multitasking. J. Exp. Psychol. Hum. Percept. Perform. 2008;34:1212–1228. doi: 10.1037/0096-1523.34.5.1212. PubMed DOI
Musacchia G, Arum L, Nicol T, Garstecki D, Kraus N. Audiovisual deficits in older adults with hearing loss: biological evidence. Ear Hear. 2009;30:505–514. doi: 10.1097/AUD.0b013e3181a7f5b7. PubMed DOI
Tomita H, Fujiwara K. Effects of allocation of visuo-spatial attention to visual stimuli triggering unilateral arm abduction on anticipatory postural control. Clin. Neurophysiol. 2008;119:2086–2097. doi: 10.1016/j.clinph.2008.05.001. PubMed DOI
Yaguchi C, Fujiwara K. Effects of attentional dispersion on sensory-motor processing of anticipatory postural control during unilateral arm abduction. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2012;123:1361–1370. doi: 10.1016/j.clinph.2011.10.045. PubMed DOI
Talsma D, Senkowski D, Woldorff MG. Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli. Exp. Brain Res. 2009;198:313–328. doi: 10.1007/s00221-009-1858-6. PubMed DOI PMC
Catani, M. & Thiebaut de Schotten, M. Atlas of human brain connections. (Oxford University Press, 2012).
Keil J, Pomper U, Senkowski D. Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal prediction. Cortex J. Devoted Study Nerv. Syst. Behav. 2016;74:277–288. doi: 10.1016/j.cortex.2015.10.023. PubMed DOI
Mesulam MM. From sensation to cognition. Brain J. Neurol. 1998;121(Pt 6):1013–1052. doi: 10.1093/brain/121.6.1013. PubMed DOI
Gohel B, Jeong Y. Sensory modality-specific spatio-temporal dynamics in response to counting tasks. Neurosci. Lett. 2014;581:20–25. doi: 10.1016/j.neulet.2014.08.015. PubMed DOI
Hidaka S, Teramoto W, Sugita Y. Spatiotemporal Processing in Crossmodal Interactions for Perception of the External World: A Review. Front. Integr. Neurosci. 2015;9:62. doi: 10.3389/fnint.2015.00062. PubMed DOI PMC
Hanson JVM, Whitaker D, Heron J. Preferential processing of tactile events under conditions of divided attention. Neuroreport. 2009;20:1392–1396. doi: 10.1097/WNR.0b013e3283319e25. PubMed DOI PMC
Dippel G, Chmielewski W, Mückschel M, Beste C . Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study. Brain Struct. Funct. 2016;221:4091–4101. doi: 10.1007/s00429-015-1148-y. PubMed DOI
Schneider D, Beste C, Wascher E. Attentional capture by irrelevant transients leads to perceptual errors in a competitive change detection task. Front. Psychol. 2012;3:164. doi: 10.3389/fpsyg.2012.00164. PubMed DOI PMC
Schneider D, Beste C, Wascher E. On the time course of bottom-up and top-down processes in selective visual attention: an EEG study. Psychophysiology. 2012;49:1492–1503. doi: 10.1111/j.1469-8986.2012.01462.x. PubMed DOI
Wascher E, Schneider D, Hoffmann S, Beste C, Sänger J. When compensation fails: attentional deficits in healthy ageing caused by visual distraction. Neuropsychologia. 2012;50:3185–3192. doi: 10.1016/j.neuropsychologia.2012.09.033. PubMed DOI
Botvinick MM. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 2007;7:356–366. doi: 10.3758/CABN.7.4.356. PubMed DOI
Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 2004;8:539–546. doi: 10.1016/j.tics.2004.10.003. PubMed DOI
Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 1990;28:597–613. doi: 10.1002/ana.410280502. PubMed DOI
Ffytche DH, Blom JD, Catani M. Disorders of visual perception. J. Neurol. Neurosurg. Psychiatry. 2010;81:1280–1287. doi: 10.1136/jnnp.2008.171348. PubMed DOI
Quinn BT, et al. Intracranial cortical responses during visual-tactile integration in humans. J. Neurosci. Off. J. Soc. Neurosci. 2014;34:171–181. doi: 10.1523/JNEUROSCI.0532-13.2014. PubMed DOI PMC
ffytche DH. Neural codes for conscious vision. Trends Cogn. Sci. 2002;6:493–495. doi: 10.1016/S1364-6613(02)02029-6. PubMed DOI
Büchel C, Price C, Friston K. A multimodal language region in the ventral visual pathway. Nature. 1998;394:274–277. doi: 10.1038/28389. PubMed DOI
Meredith MA. On the neuronal basis for multisensory convergence: a brief overview. Brain Res. Cogn. Brain Res. 2002;14:31–40. doi: 10.1016/S0926-6410(02)00059-9. PubMed DOI
Bluschke A, Roessner V, Beste C. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype. Psychol. Med. 2016;46:1277–1287. doi: 10.1017/S0033291715002822. PubMed DOI
Cornoldi C, et al. Working memory interference control deficit in children referred by teachers for ADHD symptoms. Child Neuropsychol. J. Norm. Abnorm. Dev. Child. Adolesc. 2001;7:230–240. PubMed
Carmona S, et al. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2015;36:2544–2557. doi: 10.1002/hbm.22790. PubMed DOI PMC
Bluschke A, Chmielewski WX, Roessner V, Beste C. Intact Context-Dependent Modulation of Conflict Monitoring in Childhood ADHD. J. Atten. Disord. 2016 PubMed
de Jong JJ, Hodiamont PPG, de Gelder B. Modality-specific attention and multisensory integration of emotions in schizophrenia: reduced regulatory effects. Schizophr. Res. 2010;122:136–143. doi: 10.1016/j.schres.2010.04.010. PubMed DOI
Mayer AR, et al. An fMRI study of multimodal selective attention in schizophrenia. Br. J. Psychiatry J. Ment. Sci. 2015;207:420–428. doi: 10.1192/bjp.bp.114.155499. PubMed DOI PMC
Logan GD, Cowan WB. On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 1984;91:295–327. doi: 10.1037/0033-295X.91.3.295. PubMed DOI