• This record comes from PubMed

Trends and events through seven centuries: the history of a wetland landscape in the Czech Republic

. 2017 Feb ; 17 (2) : 501-514. [epub] 20160823

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
278065 European Research Council - International

Environmental change can be viewed as the combined result of long-term processes and singular events. While long-term trends appear to be readily available for observation (in the form of temporal comparisons or space-for-time substitution), it is more difficult to gain information on singular events in the past, although these can be equally significant in shaping ecosystems. We examined the past 700 years in the history of a lowland wetland landscape in the Czech Republic with the help of palaeoecological, ecological, landscape archaeological, and archival data. Macrofossil and pollen data were compared to known drainage works in the area and historical climatological data. Trends and events in habitat conditions were assessed using species indicator values. Results showed that ecological succession was the general process in the study area, detected as a trend towards eutrophication, desiccation and vegetation closure. Short-term events influenced development at the sites mainly from the second half of the 19th century. This is consistent with drainage history, although bias related to sample frequency cannot be excluded. On the whole, long-term trends and discrete events were complementary on different scales. We conclude that humans facilitated and accelerated background processes, which can be most likely associated with the succession of open wetlands towards terrestrial ecosystems.

See more in PubMed

Aston M. Interpreting the landscape: Landscape archaeology and local history. Routledge; London: 1985.

Balátová-Tuláčková E. Grundwasserganglinien und Wiesengesellschaften (Vergleichende Studie der Wiesen aus Südmähren und der Südwestslowakei) 2. Vol. 2. Přírodovědné práce ústavů Československé Akademie Věd; Brno: 1968. pp. 1–37.

Balátová-Tuláčková E. Rieder und Sumpfwiesen der Ordnung Magnocaricetalia in der Záhorie-Tiefebene und dem nördlich angrenzenden Gebiete. Vegetácia ČSSR, Ser B. 1976;3:1–257.

Bennike O. Palaeoecological studies of Holocene lake sediments from west Greenland. Palaeogeogr Palaeocl. 2000;155:285–304. doi: 10.1016/S0031-0182(99)00121-2. DOI

Beug HJ. Lietfaden der Pollen bestimmung für Mitteleuropa und angrezende Gebiete. Verlag Dr. Friedrich Pfeil; München: 2004.

Birks HJB, Birks HH. Quaternary palaeoecology. Edward Arnold; London: 1980.

Bobbink R, Hornung M, Roelofs JG. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol. 1998;86:717–738. doi: 10.1046/j.1365-2745.1998.8650717.x. DOI

Brady NC, Weil RR. The nature and properties of soils. 14th ed. Pearson Prentice Hall; Upper Saddle River: 2008.

Brander LM, Bräuer I, Gerdes H, Ghermandi A, Kuik O, Markandya A, Navrud S, Nunes PALD, Schaafsma M, Vos H, Wagtendonk A. Using meta-analysis and GIS for value transfer and scaling up: Valuing climate change induced losses of European wetlands. Environ Resour Econ. 2012;52:395–413. doi: 10.1007/s10640-011-9535-1. DOI

Brázdil R, Štěpánková P, Kyncl T, Kyncl J. Fir tree-ring reconstruction of March-July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res. 2002;20:223–239. doi: 10.3354/cr020223. DOI

Brázdil R, Chromá K, Valášek H, Dolák L. Hydrometeorological extremes derived from taxation records for south-eastern Moravia, Czech Republic, 1751–1900 AD. Clim Past. 2012;8:467–481. doi: 10.5194/cp-8-467-2012. DOI

Bronk Ramsey C. OxCal 4.2 Manual. Oxford Radiocarbon Accelerator Unit; Oxford: 2011. [Accessed 20 August 2015]. http://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html.

Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T. Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor Appl Climatol. 2011;105:167–180. doi: 10.1007/s00704-010-0381-9. DOI

Cappers RTJ, Bekker RM, Jans JEA. Digitale Zadenatlas van Nederland Digital Seed Atlas of the Netherlands. Barkhuis Publishing; Groningen: 2006.

Cappers RTJ, Neef R. Handbook of plant palaeoecology. Barkhuis Publishing; Groningen: 2012.

Chase JM, Leibold MA. Ecological niches: linking classical and contemporary approaches. University of Chicago Press; Chicago: 2003.

Čížková H, Květ J, Comín FA, Laiho R, Pokorný J, Pithart D. Actual state of European wetlands and their possible future in the context of global climate change. Aquat Sci. 2013;75:3–26. doi: 10.1007/s00027-011-0233-4. DOI

Clements FE. Plant succession: An analysis of the development of vegetation. Carnegie Institution; Washington: 1916.

Czerepko J. A long-term study of successional dynamics in the forest wetlands. Forest Ecol Manag. 2008;255:630–642. doi: 10.1016/j.foreco.2007.09.039. DOI

Davidson TA, Sayer CD, Bennion H, David C, Rose N, Wade MP. A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biol. 2005;50:1671–1686. doi: 10.1111/j.1365-2427.2005.01414.x. DOI

Diekmann M. Species indicator values as an important tool in applied plant ecology–a review. Basic Appl Ecol. 2003;4:493–506. doi: 10.1078/1439-1791-00185. DOI

Dobrovolný P, Brázdil R, Trnka M, Kotyza O, Valášek H. Precipitation reconstruction for the Czech Lands, AD 1501–2010. Int J Climatol. 2015;35:1–14. doi: 10.1002/joc.3957. DOI

Egan D, Howell E, editors. The historical ecology handbook: A restorationist's guide to reference ecosystems. Island Press; Washington: 2001.

Faegri K, Iversen J. Textbook of pollen analysis. 4th ed. John Wiley & Sons; Chichester: 1989.

Fernández-Jalvo Y, Scott L, Andrews P. Taphonomy in palaeoecological interpretations. Quat Sci Rev. 2011;30:1296–1302. doi: 10.1016/j.quascirev.2010.07.022. DOI

Gifford DP. Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines. Advances in Archaeological Method and Theory. 1981;4:365–438.

Glenn-Lewin DC, Peet RK, Veblen TT, editors. Plant succession: theory and prediction. Chapman & Hall; London: 1992.

Grimm EC. Tilia software v.1.7.16. Illinois State Museum; Springfield: 2011.

Hejný S. Ein Beitrag zur ökologischen Gliederung der Makrophyten in den Niederungsgewässern der Tschechoslowakei. Preslia. 1957;29:349–368.

Hejný S. Ökologische Charakteristik der Wasser- und Sumpflanzen in den slowakischen Tiefebenen (Donau- und Theißgebiet) Vydavatel’stvo Slovenskej akadémie vied; Bratislava: 1960.

Hejný S, Hroudová Z. Plant adaptations to shallow water habitats. Arch Hydrobiol. 1987;27:157–166.

Hejný S, Husák Š. Higher plant communities. In: Dykyjová D, Květ J, editors. Pond littoral ecosystems. Springer; Berlin: 1978. pp. 23–64.

Hejný S, Husák Š, Jeřábková O, Ostrý I. Anthropogenic impact on fishpond flora and vegetation. In: Gopal B, Turner RE, Wetzel RG, Whigham DF, editors. Wetlands, ecology and management. National Institute of Ecology and International Scientific Publications; Jaipur: 1982. pp. 425–433.

Hrádek M. Geomorphological aspects of the flood of July 1997 in the Morava and Oder Basins in Moravia, Czech Republic. Studia Geomorphologica Carpatho-Balcanica. 1999;33:45–66.

Hroudová Z, Zákravský P, Hrouda L, Ostrý I. Oenanthe aquatica (L.) Poir.: Seed reproduction, population structure, habitat conditions and distribution in Czechoslovakia. Folia Geobot. 1992;27:301–335.

Jamrichová E, Szabó P, Hédl R, Kuneš P, Bobek P, Pelánková B. Continuity and change in the vegetation of a Central European oakwood. Holocene. 2013;23:46–56. doi: 10.1177/0959683612450200. DOI

Jentsch A, Kreyling J, Beierkuhnlein C. A new generation of climate-change experiments: events, not trends. Front Ecol Environ. 2007;5:365–374. doi: 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2. DOI

Keddy PA. Wetland ecology Principles and conservation. 2nd ed. Cambridge University Press; Cambridge: 2010.

Khan FA, Ansari AA. Eutrophication: An ecological vision. Bot Rev. 2005;71:449–482. doi: 10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2. DOI

Lacoul P, Freedman B. Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev. 2006;14:89–136. doi: 10.1139/a06-001. DOI

Lamentowicz M, Tobolski K, Mitchell EAD. Palaeoecological evidence for anthropogenic acidification of a kettlehole peatland in northern Poland. Holocene. 2007;17:1185–1196. doi: 10.1177/0959683607085123. DOI

Magyari E, Sümegi P, Braun M, Jakab G, Molnár M. Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. J Ecol. 2001;89:1019–1032. doi: 10.1111/j.1365-2745.2001.00624.x. DOI

McNeill JR. Something new under the sun: An environmental history of the twentieth-century world. Norton; New York: 2000.

Middleton BA, Holsten B, van Diggelen R. Biodiversity management of fens and fen meadows by grazing, cutting and burning. Appl Veg Sci. 2006;9:307–316. doi: 10.1111/j.1654-109X.2006.tb00680.x. DOI

Moravcová L, Zákravský P, Hroudová Z. Germination and seedling establishment in Alisma gramineum, A. plantago-aquatica and A. lanceolatum under different environmental conditions. Folia Geobot. 2001;36:131–146. doi: 10.1007/BF02803158. DOI

Němec R, Dřevojan P, Šumberová K. Wetlands on arable land in Znojmo region as a refuge of important and rare vascular plants. Thayensia. 2014;11:3–76.

Novák V, Pelíšek J. Stručná charakteristika půd na přesypových pískách v lesní oblasti Dubrava u Hodonína. Lesnická práce. 1943;8:225–235.

Oppenheimer C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geog. 2003;27:230–259. doi: 10.1191/0309133303pp379ra. DOI

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI

Pickett STA. Space-for-time substitution as an alternative to long-term studies. In: Likens GE, editor. Long-term studies in ecology. Springer; New York: 1989. pp. 110–135.

Podani J. Braun-Blanquet's legacy and data analysis in vegetation science. J Veg Sci. 2006;17:113–117. doi: 10.1111/j.1654-1103.2006.tb02429.x. DOI

Pokorný P, Jankovská V. Long-term vegetation dynamics and the infilling process of a former lake (Švarcenberk, Czech Republic) Folia Geobot. 2000;35:433–457. doi: 10.1007/BF02803554. DOI

Pott R, Remy D. Gewässer des Binnenlandes. Ulmer; Stuttgart: 2000.

Prach K, Walker LR. Four opportunities for studies of ecological succession. Trends Ecol Evol. 2011;26:119–123. doi: 10.1016/j.tree.2010.12.007. PubMed DOI

Rackham O. Woodlands. Collins; London: 2006.

Rasmussen P, Anderson NJ. Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr. 2005;32:1993–2005. doi: 10.1111/j.1365-2699.2005.01352.x. DOI

Reille M. Pollen et spores D´Europe et D´Afrique du Nort Supplement 1. Laboratoire de botanique historique et palynologie; Marseille: 1995.

Reille M. Pollen et spores D´Europe et D´Afrique du Nort Supplement 2. Laboratoire de botanique historique et palynologie; Marseille: 1998.

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, et al. IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon. 2013;55:1869–1887. doi: 10.2458/azu_js_rc.55.16947. DOI

Rintanen T. Changes in the flora and vegetation of 113 Finnish lakes during 40 years. Ann Bot Fenn. 1996;33:101–122.

Sayre NF. Ecological and geographical scale: Parallels and potential for integration. Prog Hum Geog. 2005;29:276–290. doi: 10.1191/0309132505ph546oa. DOI

Sonnlechner C. The establishment of new units of production in Carolingian times: making early medieval sources relevant for environmental history. Viator. 2004;35:21–48. doi: 10.1484/J.VIATOR.2.300191. DOI

Stankevica K, Kalnina L, Klavins M, Cerina A, Ustupe L, Kaup E. Reconstruction of the Holocene palaeoenvironmental conditions accordingly to the multiproxy sedimentary records from Lake Pilvelis, Latvia. Quat Int. 2015;386:102–115. doi: 10.1016/j.quaint.2015.02.031. DOI

Stothers RB. The great Tambora eruption in 1815 and its aftermath. Science. 1984;224:1191–1198. doi: 10.1126/science.224.4654.1191. PubMed DOI

Strohbach M, Audorff V, Beierkuhnlein C. Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors? J Limnol. 2009;68:375–384. doi: 10.4081/jlimnol.2009.375. DOI

Swetnam TW, Allen CD, Betancourt JL. Applied historical ecology: using the past to manage for the future. Ecol Appl. 1999;9:1189–1206. doi: 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2. DOI

Szabó P. Ancient woodland boundaries in Europe. J Hist Geogr. 2010;36:205–214. doi: 10.1016/j.jhg.2009.10.005. DOI

Szabó P. Historical ecology: Past, present and future. Biol Rev. 2015;90:997–1014. doi: 10.1111/brv.12141. PubMed DOI PMC

Szabó P, Hédl R. Advancing the integration of history and ecology for conservation. Conserv Biol. 2011;25:680–687. doi: 10.1111/j.1523-1739.2011.01710.x. PubMed DOI

Szabó P, Hédl R. Socio-economic demands, ecological conditions and the power of tradition: past woodland management decisions in a Central European landscape. Landscape Res. 2013;38:243–261. doi: 10.1080/01426397.2012.677022. DOI

Ter Braak CFJ, Barendregt LG. Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci. 1986;78:57–72. doi: 10.1016/0025-5564(86)90031-3. DOI

Ter Braak CJF, Šmilauer P. Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power; Ithaca: 2012.

Thompson KBSR, Band SR, Hodgson JG. Seed size and shape predict persistence in soil. Funct Ecol. 1993;7:236–241. doi: 10.2307/2389893. DOI

Tolasz R, Míková T, Valeriánová A, Voženílek V, editors. Climate atlas of Czechia. Czech Hydrometeorological Institute, Praha and Palacký University; Olomouc: 2007.

Tölgyesi C, Bátori Z, Erdős L. Using statistical tests on relative ecological indicator values to compare vegetation units–Different approaches and weighting methods. Ecol Indic. 2014;36:441–446. doi: 10.1016/j.ecolind.2013.09.002. DOI

Väliranta MM. Long-term changes in aquatic plant species composition in North-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquat Bot. 2006;85:224–232. doi: 10.1016/j.aquabot.2006.05.003. DOI

van Geel B, Bohncke SJ, Dee H. A palaeoecological study of an upper Late Glacial and Holocene sequence from “de Borchert”, the Netherlands. Rev Paleobot Palyno. 1980;31:367–448. doi: 10.1016/0034-6667(80)90035-4. DOI

Velikevich FY, Zastawniak E. Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 1 –Pteridophytes and monocotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences; Kraków: 2006.

Velikevich FY, Zastawniak E. Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 2 –Herbaceous dicotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences; Kraków: 2008.

Walker M, Walker MJC. Quaternary dating methods. John Wiley & Sons; New York: 2005.

White PS, Jentsch A. The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Lüttge U, Kadereit W, Beyschlag, editors. Genetics, physiology, systematics, ecology Progress in botany. Vol. 62. Springer; Berlin: 2001. pp. 399–450.

Wildi O. Why mean indicator values are not biased. J Veg Sci. 2016;27:40–49. doi: 10.1111/jvs.12336. DOI

Wohlfarth B, Tarasov P, Bennike O, Lacourse T, Subetto D, Torssander P, Romanenko F. Late glacial and Holocene palaeoenvironmental changes in the Rostov-Yaroslavl’ area, West Central Russia. J Paleolimnol. 2006;35:543–569. doi: 10.1007/s10933-005-3240-4. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...