Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29038566
PubMed Central
PMC5643343
DOI
10.1038/s41598-017-13390-4
PII: 10.1038/s41598-017-13390-4
Knihovny.cz E-resources
- MeSH
- Cryoelectron Microscopy * methods MeSH
- Electron Microscope Tomography * methods MeSH
- Virion ultrastructure MeSH
- Viruses ultrastructure MeSH
- Imaging, Three-Dimensional MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
Assistance Publique des Hôpitaux de Marseille La Timone 13005 Marseille France
Institute of Physics AS CR v v i Na Slovance 2 18221 Prague 8 Czech Republic
National Institute for Physiological Sciences Okazaki Aichi 444 8585 Japan
See more in PubMed
La Scola B, et al. A giant virus in amoebae. Science. 2003;299:2033. doi: 10.1126/science.1081867. PubMed DOI
Abergel C, Legendre M, Claverie JM. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS microbiology reviews. 2015;39:779–796. doi: 10.1093/femsre/fuv037. PubMed DOI
Raoult D, et al. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–1350. doi: 10.1126/science.1101485. PubMed DOI
Philippe N, et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 2013;341:281–286. doi: 10.1126/science.1239181. PubMed DOI
Scheid P, Balczun C, Schaub GA. Some secrets are revealed: parasitic keratitis amoebae as vectors of the scarcely described pandoraviruses to humans. Parasitology research. 2014;113:3759–3764. doi: 10.1007/s00436-014-4041-3. PubMed DOI
Legendre M, et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:4274–4279. doi: 10.1073/pnas.1320670111. PubMed DOI PMC
Levasseur A, et al. Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution. Genome biology and evolution. 2016;8:2333–2339. doi: 10.1093/gbe/evw153. PubMed DOI PMC
Legendre M, et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proceedings of the National Academy of Sciences of the United States of America. 2015;112:E5327–5335. doi: 10.1073/pnas.1510795112. PubMed DOI PMC
Zauberman N, et al. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus. PLoS biology. 2008;6:e114. doi: 10.1371/journal.pbio.0060114. PubMed DOI PMC
Xiao C, et al. Cryo-electron microscopy of the giant Mimivirus. Journal of molecular biology. 2005;353:493–496. doi: 10.1016/j.jmb.2005.08.060. PubMed DOI
Xiao C, et al. Structural studies of the giant mimivirus. PLoS biology. 2009;7:e92. doi: 10.1371/journal.pbio.1000092. PubMed DOI PMC
Claverie JM, Abergel C. Mimivirus and its virophage. Annual review of genetics. 2009;43:49–66. doi: 10.1146/annurev-genet-102108-134255. PubMed DOI
Piacente F, et al. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (Viosamine) The Journal of biological chemistry. 2012;287:3009–3018. doi: 10.1074/jbc.M111.314559. PubMed DOI PMC
Piacente F, et al. Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology. 2014;24:51–61. doi: 10.1093/glycob/cwt089. PubMed DOI
Mutsafi Y, Shimoni E, Shimon A, Minsky A. Membrane assembly during the infection cycle of the giant Mimivirus. PLoS pathogens. 2013;9:e1003367. doi: 10.1371/journal.ppat.1003367. PubMed DOI PMC
Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Physical review letters. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI
Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:17486–17491. doi: 10.1073/pnas.1110889108. PubMed DOI PMC
Yoosuf N, et al. Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the megavirus lineage. Genome biology and evolution. 2012;4:1324–1330. doi: 10.1093/gbe/evs109. PubMed DOI PMC
Grimm R, Typke D, Barmann M, Baumeister W. Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy. 1996;63:169–179. doi: 10.1016/0304-3991(96)00035-6. PubMed DOI
Koster AJ, et al. Perspectives of molecular and cellular electron tomography. Journal of structural biology. 1997;120:276–308. doi: 10.1006/jsbi.1997.3933. PubMed DOI
Murata K, et al. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography. Ultramicroscopy. 2014;146:39–45. doi: 10.1016/j.ultramic.2014.05.008. PubMed DOI
Danev R, Nagayama K. Phase plates for transmission electron microscopy. Methods in enzymology. 2010;481:343–369. doi: 10.1016/S0076-6879(10)81014-6. PubMed DOI
Murata K, et al. Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure. 2010;18:903–912. doi: 10.1016/j.str.2010.06.006. PubMed DOI PMC
Rochat RH, et al. Seeing the portal in herpes simplex virus type 1 B capsids. Journal of virology. 2011;85:1871–1874. doi: 10.1128/JVI.01663-10. PubMed DOI PMC
Dai W, et al. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nature protocols. 2014;9:2630–2642. doi: 10.1038/nprot.2014.176. PubMed DOI PMC
Dai W, et al. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature. 2013;502:707–710. doi: 10.1038/nature12604. PubMed DOI PMC
Malac M, Beleggia M, Kawasaki M, Li P, Egerton RF. Convenient contrast enhancement by a hole-free phase plate. Ultramicroscopy. 2012;118:77–89. doi: 10.1016/j.ultramic.2012.02.004. PubMed DOI
Hosogi N, Sen A, Iijima H. Comparison of cryo TEM images obtained with Zernike and Hole-Free Phase Plates. Microsc. Microanal. 2015;21:1389–1390. doi: 10.1017/S1431927615007722. DOI
Danev R, Buijsse B, Khoshouei M, Plitzko JM, Baumeister W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:15635–15640. doi: 10.1073/pnas.1418377111. PubMed DOI PMC
Grunewald K, et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396–1398. doi: 10.1126/science.1090284. PubMed DOI
Hayashida M, Malac M. Practical electron tomography guide: Recent progress and future opportunities. Micron. 2016;91:49–74. doi: 10.1016/j.micron.2016.09.010. PubMed DOI
Rez P, Larsen T, Elbaum M. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens. Journal of structural biology. 2016;196:466–478. doi: 10.1016/j.jsb.2016.09.014. PubMed DOI
Wolf SG, Houben L, Elbaum M. Cryo-scanning transmission electron tomography of vitrified cells. Nature methods. 2014;11:423–428. doi: 10.1038/nmeth.2842. PubMed DOI
Aoyama, K., Nagano, K. & Mitsuoka, K. Optimization of STEM imaging conditions for cryo-tomography. PubMed
Marko M, Hsieh C, Schalek R, Frank J, Mannella C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nature methods. 2007;4:215–217. doi: 10.1038/nmeth1014. PubMed DOI
Murata K, Hagiwara S, Kimori Y, Kaneko Y. Ultrastructure of compacted DNA in cyanobacteria by high-voltage cryo-electron tomography. Scientific reports. 2016;6:34934. doi: 10.1038/srep34934. PubMed DOI PMC
Satoh K, et al. Effective synaptome analysis of itch-mediating neurons in the spinal cord: A novel immunohistochemical methodology using high-voltage electron microscopy. Neuroscience letters. 2015;599:86–91. doi: 10.1016/j.neulet.2015.05.031. PubMed DOI
Satoh K, et al. Three-dimensional visualization of multiple synapses in thick sections using high-voltage electron microscopy in the rat spinal cord. Data in brief. 2015;4:566–570. doi: 10.1016/j.dib.2015.07.005. PubMed DOI PMC
Malis T, Cheng SC, Egerton RF. EELS log-ration technique for specimen-thickness measurment in the TEM. J Electron Microsc Tech. 1988;8:193–200. doi: 10.1002/jemt.1060080206. PubMed DOI
Sun S, Shi S, Leapman R. Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy. Ultramicroscopy. 1993;50:127–139. doi: 10.1016/0304-3991(93)90003-G. PubMed DOI
Dohnalkova AC, et al. Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Applied and environmental microbiology. 2011;77:1254–1262. doi: 10.1128/AEM.02001-10. PubMed DOI PMC
Zhang X, et al. Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:14837–14842. doi: 10.1073/pnas.1107847108. PubMed DOI PMC
Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. Journal of structural biology. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI