Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29042565
PubMed Central
PMC5645419
DOI
10.1038/s41467-017-01204-0
PII: 10.1038/s41467-017-01204-0
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Topological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z2 class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely protected by individual crystal symmetries and exist for an even number of Dirac cones. Here, we demonstrate that Bi-doping of Pb1-x Sn x Se (111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z2 topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy and induces a gap at [Formula: see text], while the three Dirac cones at the [Formula: see text] points of the surface Brillouin zone remain intact. We interpret this new phase transition as caused by a lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric fields.Transitions between topological phases of matter protected by different symmetries remain rare. Here, Mandal et al. report a quantum phase transition from a topological crystalline insulator to a Z2 topological insulator by doping Bi into Pb1-x Sn x Se (111) thin films.
Department of Condensed Matter Physics Masaryk University Kotlářská 267 2 61137 Brno Czech Republic
Helmholtz Zentrum Berlin für Materialien und Energie Albert Einstein Strasse 15 12489 Berlin Germany
National Technical University Kharkiv Polytechnic Institute Frunze Street 21 61002 Kharkiv Ukraine
See more in PubMed
Hasan MZ, Kane CL. Colloquium: topological insulators. Rev. Mod. Phys. 2010;82:3045–3067. doi: 10.1103/RevModPhys.82.3045. DOI
Ezawa M, Tanaka Y, Nagaosa N. Topological phase transition without gap closing. Sci. Rep. 2013;3:2790. doi: 10.1038/srep02790. PubMed DOI PMC
Qi X-L, Zhang S-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011;83:1057–1110. doi: 10.1103/RevModPhys.83.1057. DOI
Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013).
Fu L, Kane CL. Topological insulators with inversion symmetry. Phys. Rev. B. 2007;76:045302. doi: 10.1103/PhysRevB.76.045302. DOI
Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys. Rev. Lett. 2007;98:106803. doi: 10.1103/PhysRevLett.98.106803. PubMed DOI
Brahlek M, et al. Topological-metal to band-insulator transition in (Bi1−xInx)2Se3 thin Films. Phys. Rev. Lett. 2012;109:186403. doi: 10.1103/PhysRevLett.109.186403. PubMed DOI
Wu L, et al. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3. Nat. Phys. 2013;9:410–414. doi: 10.1038/nphys2647. DOI
Xu S-Y, et al. Topological phase transition and texture inversion in a tunable topological insulator. Science. 2011;332:560–564. doi: 10.1126/science.1201607. PubMed DOI
Fu L. Topological crystalline insulators. Phys. Rev. Lett. 2011;106:106802. doi: 10.1103/PhysRevLett.106.106802. PubMed DOI
Hsieh TH, et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012;3:982. doi: 10.1038/ncomms1969. PubMed DOI
Tanaka Y, et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012;8:800–803. doi: 10.1038/nphys2442. DOI
Xu S-Y, et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nat. Commun. 2012;3:1192. doi: 10.1038/ncomms2191. PubMed DOI
Ando Y, Fu L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 2015;6:361–381. doi: 10.1146/annurev-conmatphys-031214-014501. DOI
Dziawa P, et al. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2012;11:1023–1027. PubMed
Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007;6:824–832. doi: 10.1038/nmat2009. PubMed DOI
Schmitte, F. J. in Physics of Non-Tetrahedrally Bonded Binary Compounds II (ed. Madelung, O.) Landolt-Börnstein, New Series III/17F (Springer, Berlin, 1983).
Chattopadhyay T, Boucherle JX, von Schnering HG. Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C. 1987;20:1431. doi: 10.1088/0022-3719/20/10/012. DOI
Di Sante D, Barone P, Bertacco R, Picozzi S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 2013;25:509–513. doi: 10.1002/adma.201203199. PubMed DOI
Okada Y, et al. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science. 2013;341:1496–1499. doi: 10.1126/science.1239451. PubMed DOI
Zeljkovic I, et al. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators. Nat. Mater. 2015;14:318–324. doi: 10.1038/nmat4215. PubMed DOI
Wojek BM, et al. Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator. Nat. Commun. 2015;6:8463. doi: 10.1038/ncomms9463. PubMed DOI PMC
Niu C, et al. Two-dimensional topological crystalline insulator and topological phase transition in TlSe and TlS monolayers. Nano. Lett. 2015;15:6071–6075. doi: 10.1021/acs.nanolett.5b02299. PubMed DOI
Plekhanov E, Barone P, Di Sante D, Picozzi S. Engineering relativistic effects in ferroelectric SnTe. Phys. Rev. B. 2014;90:161108(R). doi: 10.1103/PhysRevB.90.161108. DOI
Safaei S, Galicka M, Kacman P, Buczko R. Quantum spin hall effect in IV-VI topological crystalline insulators. New J. Phys. 2015;17:063041. doi: 10.1088/1367-2630/17/6/063041. DOI
Neupane M, et al. Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator. Phys. Rev. B. 2015;92:075131. doi: 10.1103/PhysRevB.92.075131. DOI
Polley CM, et al. Observation of topological crystalline insulator surface states on (111)-oriented Pb1−xSnxSe films. Phys. Rev. B. 2014;89:075317. doi: 10.1103/PhysRevB.89.075317. DOI
Strauss AJ. Inversion of conduction and valence bands in Pb1-xSnxSe alloys. Phys. Rev. 1967;157:608–611. doi: 10.1103/PhysRev.157.608. DOI
Zykov VA, Gavrikova TA, Il’in VI, Nemov SA, Savintsev PV. Effect of bismuth impurity on carrier density in PbSe:Bi:Se epitaxial layers. Semiconductors. 2001;35:1254–1258. doi: 10.1134/1.1418067. DOI
Sugai S, et al. Carrier density dependence of soft TO-phonon in SnTe by Raman scattering. Solid State Commun. 1977;24:407–409. doi: 10.1016/0038-1098(77)90992-9. DOI
Littlewood PB. The crystal structure of IV-VI compounds. I. Classification and description. J. Phys. C Solid State Phys. 1980;13:4855–4873. doi: 10.1088/0022-3719/13/26/009. DOI
Littlewood PB. The crystal structure of IV-VI compounds. II. A microscopic model for cubic/rhombohedral materials. J. Phys. C Solid State Phys. 1980;13:4875–4892. doi: 10.1088/0022-3719/13/26/010. DOI
Littlewood PB. Structure and bonding in narrow gap semiconductors. Crit. Rev. Solid State Mater. Sci. 1983;11:229–285. doi: 10.1080/01611598308244064. DOI
Nimtz, G. & Schlicht, B. in Springer Tracts in Modern Physics 1–117, Vol. 98, Narrow-gap semiconductors (Springer, Berlin, 1983).
Jantsch, W., Bussmann-Holder, A., Bilz, H. & Vogel, P. in Springer Tracts in Modern Physics 1-98, Vol. 99, Dynamical properties of IV-VI compounds (Springer, Berlin, 1983).
Bangert E, Bauer G, Fantner EJ, Pascher H. Magneto-optical investigations of phase-transition-induced band-structure changes of Pb1-xGexTe. Phys. Rev. B. 1985;31:7958. doi: 10.1103/PhysRevB.31.7958. PubMed DOI
Lebedev AI, Sluchinskaya IA. Influence of random fields on the ferroelectric phase transition in IV–VI semiconductors. Ferroelectrics. 1995;169:293–301. doi: 10.1080/00150199508217341. DOI
Chang K, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science. 2016;353:274–278. doi: 10.1126/science.aad8609. PubMed DOI
Kool BJ, Noheda B. Ferroelectric chalcogenides–materials at the edge. Science. 2016;353:221–222. doi: 10.1126/science.aaf9081. PubMed DOI
Iizumi M, Hamaguchi Y, Komatsubara KF, Kato Y. Phase transition in SnTe with low carrier concentration. J. Phys. Soc. Jpn. 1975;38:443–449. doi: 10.1143/JPSJ.38.443. DOI