Pluripotent Stem Cell-Derived Hematopoietic Progenitors Are Unable to Downregulate Key Epithelial-Mesenchymal Transition-Associated miRNAs
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
614620
European Research Council - International
BB/E012841/1
Biotechnology and Biological Sciences Research Council - United Kingdom
G0301182
Medical Research Council - United Kingdom
3000021023
Medical Research Council - United Kingdom
PubMed
29047185
PubMed Central
PMC5765482
DOI
10.1002/stem.2724
Knihovny.cz E-zdroje
- Klíčová slova
- Epithelial-mesenchymal transition, Hematopoietic differentiation, Human embryonic stem cells, miRNAs,
- MeSH
- buněčná diferenciace MeSH
- down regulace MeSH
- epitelo-mezenchymální tranzice genetika MeSH
- hematopoetické kmenové buňky metabolismus MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- pluripotentní kmenové buňky metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long-term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis-regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial-mesenchymal transition or metastasis (including miR-200b, miR-200c, miR-205, miR-148a, and miR-424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells 2018;36:55-64.
Centro de Investigación Príncipe Felipe Valencia Spain
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Genetic Medicine Newcastle University Newcastle upon Tyne United Kingdom
Zobrazit více v PubMed
Slukvin II. Generating human hematopoietic stem cells in vitro: Exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Lett 2016;590:4126–4143. PubMed PMC
Risueno RM, Sachlos E, Lee JH et al. Inability of human induced pluripotent stem cell‐hematopoietic derivatives to downregulate microRNAs in vivo reveals a block in xenograft hematopoietic regeneration. Stem Cells 2012;30:131–139. PubMed
Wang L, Menendez P, Shojaei F et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 2005;201:1603–1614. PubMed PMC
Ledran MH, Krassowska A, Armstrong L et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 2008;3:85–98. PubMed
Tian X, Woll PS, Morris JK et al. Hematopoietic engraftment of human embryonic stem cell‐derived cells is regulated by recipient innate immunity. Stem Cells 2006;24:1370–1380. PubMed
Lu M, Kardel MD, O'connor MD et al. Enhanced generation of hematopoietic cells from human hepatocarcinoma cell‐stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 2009;37:924–936. PubMed
Riddell J, Gazit R, Garrison BS et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 2014;157:549–564. PubMed PMC
Sandler VM, Lis R, Liu Y et al. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 2014;511:312–318. PubMed PMC
Garcia‐Alegria E, Menegatti S, Batta K et al. Emerging concepts for the in vitro derivation of murine hematopoietic stem and progenitor cells. FEBS Lett 2016;590:4116–4125. PubMed
Real PJ et al. The role of RUNX1 isoforms in hematopoietic commitment of human pluripotent stem cells. Blood 2013;121:5250–5252. PubMed
Rowe RG, Mandelbaum J, Zon LI et al. Engineering hematopoietic stem cells: Lessons from development. Cell Stem Cell 2016;18:707–720. PubMed PMC
Lancrin C, Sroczynska P, Stephenson C et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 2009;457:892–895. PubMed PMC
Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010;464:112–115. PubMed
Boisset J‐C, van Cappellen W, Andrieu‐Soler C et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010;464:116–120. PubMed
Ciriza J, Thompson H, Petrosian R et al. The migration of hematopoietic progenitors from the fetal liver to the fetal bone marrow: Lessons learned and possible clinical applications. Exp Hematol 2013;41:411–423. PubMed
Ivanovs A, Rybtsov S, Anderson RA et al. Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Reports 2014;2:449–456. PubMed PMC
Olivier EN, Marenah L, McCahill A et al. High‐efficiency serum‐free feeder‐free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Translational Medicine 2016;5:1394–1405. PubMed PMC
Bolstad BM, Irizarry RA, Astrand M et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19:185–193. PubMed
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:Article3. PubMed
Agarwal V, Bell GW, Nam JW et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. doi:10.7554/eLife.05005. PubMed DOI PMC
Kozomara A, Griffiths‐Jones S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42:D68–D73. PubMed PMC
Chou CH, Chang NW, Shrestha S et al. miRTarBase 2016: Updates to the experimentally validated miRNA‐target interactions database. Nucleic Acids Res 2016;44:D239–D247. PubMed PMC
Zhao M, Kong L, Liu Y et al. dbEMT: An epithelial‐mesenchymal transition associated gene resource. Sci Rep 2015;5:11459. PubMed PMC
Shannon P, Markiel A, Ozier O et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504. PubMed PMC
Chen MJ, Yokomizo T, Zeigler BM et al. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009;457:887–891. PubMed PMC
Cesi V, Casciati A, Sesti F et al. TGFbeta‐induced c‐Myb affects the expression of EMT‐associated genes and promotes invasion of ER+ breast cancer cells. Cell Cycle. 2011;10:4149–4161. PubMed
Grabher C, Payne EM, Johnston AB et al. Zebrafish microRNA‐126 determines hematopoietic cell fate through c‐Myb. Leukemia 2011;25:506–514. PubMed PMC
Gregory PA, Bert AG, Paterson EL et al. The miR‐200 family and miR‐205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593–601. PubMed
Burk U, Schubert J, Wellner U et al. A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008;9:582–589. PubMed PMC
Nishizawa M, Chonabayashi K, Nomura M et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell 2016;19:341–354. PubMed
Sugimura R, Jha DK, Han A et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 2017;545:432–438. PubMed PMC
Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: Advances and questions. Development 2011;138:1017–1031. PubMed
Lin Y, Yoder MC, Yoshimoto M. Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection. Stem Cells Dev 2014;23:1168–1177. PubMed PMC
Frame JM, Fegan KH, Conway SJ et al. Definitive hematopoiesis in the yolk sac emerges from Wnt‐responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells 2016;34:431–444. PubMed PMC
Yzaguirre AD, Speck NA. Insights into blood cell formation from hemogenic endothelium in lesser‐known anatomic sites. Dev Dyn 2016;245:1011–1028. PubMed PMC
Taoudi S, Medvinsky A. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. Proc Natl Acad Sci USA 2007;104:9399–9403. PubMed PMC
Suzuki N, Yamazaki S, Yamaguchi T et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 2013;21:1424–1431. PubMed PMC
Amabile G, Welner RS, Nombela‐Arrieta C et al. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 2013;121:1255–1264. PubMed PMC
Pearson S, Cuvertino S, Fleury M et al. Vivo repopulating activity emerges at the onset of hematopoietic specification during embryonic stem cell differentiation. Stem Cell Reports 2015;4:431–444. PubMed PMC