Linked magnolol dimer as a selective PPARγ agonist - Structure-based rational design, synthesis, and bioactivity evaluation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 25971
Austrian Science Fund FWF - Austria
W 1232
Austrian Science Fund FWF - Austria
PubMed
29057944
PubMed Central
PMC5651862
DOI
10.1038/s41598-017-12628-5
PII: 10.1038/s41598-017-12628-5
Knihovny.cz E-zdroje
- MeSH
- bifenylové sloučeniny chemická syntéza chemie farmakologie MeSH
- dimerizace * MeSH
- HEK293 buňky MeSH
- lidé MeSH
- ligandy MeSH
- lignany chemická syntéza chemie farmakologie MeSH
- pioglitazon farmakologie MeSH
- PPAR gama agonisté chemie metabolismus MeSH
- proteinové domény MeSH
- racionální návrh léčiv * MeSH
- retinoidní X receptor alfa metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bifenylové sloučeniny MeSH
- ligandy MeSH
- lignany MeSH
- magnolol MeSH Prohlížeč
- pioglitazon MeSH
- PPAR gama MeSH
- retinoidní X receptor alfa MeSH
The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and its hetero-dimerization partner retinoid X receptor α (RXRα) are considered as drug targets in the treatment of diseases like the metabolic syndrome and diabetes mellitus type 2. Effort has been made to develop new agonists for PPARγ to obtain ligands with more favorable properties than currently used drugs. Magnolol was previously described as dual agonist of PPARγ and RXRα. Here we show the structure-based rational design of a linked magnolol dimer within the ligand binding domain of PPARγ and its synthesis. Furthermore, we evaluated its binding properties and functionality as a PPARγ agonist in vitro with the purified PPARγ ligand binding domain (LBD) and in a cell-based nuclear receptor transactivation model in HEK293 cells. We determined the synthesized magnolol dimer to bind with much higher affinity to the purified PPARγ ligand binding domain than magnolol (K i values of 5.03 and 64.42 nM, respectively). Regarding their potency to transactivate a PPARγ-dependent luciferase gene both compounds were equally effective. This is likely due to the PPARγ specificity of the newly designed magnolol dimer and lack of RXRα-driven transactivation activity by this dimeric compound.
Department of Pharmacognosy University of Vienna Vienna Austria
Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
Institute of Genetics and Animal Breeding of the Polish Academy of Sciences Jastrzebiec Poland
Zobrazit více v PubMed
Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–435. doi: 10.1146/annurev.med.53.082901.104018. PubMed DOI
Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26:244–251. doi: 10.1016/j.tips.2005.03.003. PubMed DOI
Huang TH, Teoh AW, Lin BL, Lin DS, Roufogalis B. The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol Res. 2009;60:195–206. doi: 10.1016/j.phrs.2009.03.020. PubMed DOI
Janani C, Ranjitha Kumari BD. PPAR gamma gene–a review. Diabetes Metab Syndr. 2015;9:46–50. doi: 10.1016/j.dsx.2014.09.015. PubMed DOI
Michalik L, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological Reviews. 2006;58:726–741. doi: 10.1124/pr.58.4.5. PubMed DOI
Waltenberger B, et al. Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. Monatsh. Chem. 2016;147:479–491. doi: 10.1007/s00706-015-1653-y. PubMed DOI PMC
Atanasov AG, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC
Fakhrudin N, et al. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol Pharmacol. 2010;77:559–566. doi: 10.1124/mol.109.062141. PubMed DOI PMC
Atanasov AG, et al. Honokiol: a non-adipogenic PPARgamma agonist from nature. Biochim Biophys Acta. 2013;1830:4813–4819. doi: 10.1016/j.bbagen.2013.06.021. PubMed DOI PMC
Zhang H, et al. Molecular determinants of magnolol targeting both RXRalpha and PPARgamma. PLoS One. 2011;6:e28253. doi: 10.1371/journal.pone.0028253. PubMed DOI PMC
Kotani H, Tanabe H, Mizukami H, Makishima M, Inoue M. Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. J Nat Prod. 2010;73:1332–1336. doi: 10.1021/np100120c. PubMed DOI
Rycek L, Puthenkalam R, Schnurch M, Ernst M, Mihovilovic MD. Metal-assisted synthesis of unsymmetrical magnolol and honokiol analogs and their biological assessment as GABAA receptor ligands. Bioorg Med Chem Lett. 2015;25:400–403. doi: 10.1016/j.bmcl.2014.10.091. PubMed DOI PMC
Goble, S. D. et al. Alkylamino, arylamino, and sulfonamido cyclopentane amide modulators of chemokine receptor activity. Application: WO patent 2004-US43777 2005067502 (2005).
Snieckus V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 1990;90:879–933. doi: 10.1021/cr00104a001. DOI
Denton, R. M. & Scragg, J. T. A concise synthesis of dunnianol. Synlett, 633–635, 10.1055/s-0029-1219209 (2010).
Denton RM, Scragg JT. A strategy for the synthesis of the fargenone/fargenin family of natural products: synthesis of the tricyclic core. Org. Biomol. Chem. 2012;10:5629–5635. doi: 10.1039/c2ob25489a. PubMed DOI
Denton RM, Scragg JT, Galofre AM, Gui X, Lewis W. A concise synthesis of honokiol. Tetrahedron. 2010;66:8029–8035. doi: 10.1016/j.tet.2010.08.005. DOI
Back, T. G. & Wulff, J. E. First syntheses of two quinoline alkaloids from the medicinal herb Ruta chalepensis via cyclization of an o-iodoaniline with an acetylenic sulfone. Chemical Communications (Cambridge, United Kingdom), 1710–1711, 10.1039/b205408f (2002). PubMed
Rasolofonjatovo E, et al. Regioselective hydrostannation of diarylalkynes directed by a labile ortho bromine atom: An easy access to stereodefined triarylolefins, hybrids of combretastatin A-4 and isocombretastatin A-4. Eur. J. Med. Chem. 2010;45:3617–3626. doi: 10.1016/j.ejmech.2010.05.007. PubMed DOI
Gillis, E. P., Lee, S. J., Gray, K., Burke, M. D. & Knapp, D. M. System for controlling the reactivity of boronic acids. Application: WO patent 2007-US84156 2009014550 (2009).
Johns, B. A. & Shotwell, J. B. Preparation of benzofuranylaminoalkyl boronic acid derivatives therapeutic compounds. Application: WO patent 2011-US24822 2011103063 (2011).
Linares, M. L., Agejas, F. J., Alajarin, R., Vaquero, J. J. & Alvarez-Builla, J. Synthesis of L-2-amino-8-oxodecanoic acid: an amino acid component of apicidins. Synthesis, 2069–2073, 10.1055/s-2006-942395 (2006).
Mai E, Schneider C. Scandium-bipyridine-catalyzed enantioselective aminolysis of meso-epoxides. Chemistry - A European Journal. 2007;13:2729–2741. doi: 10.1002/chem.200601307. PubMed DOI
Tzeng S-C, Liu Y-C. Peroxidase-catalyzed synthesis of neolignan and its anti-inflammatory activity. Journal of Molecular Catalysis B: Enzymatic. 2004;32:7–13. doi: 10.1016/j.molcatb.2004.09.009. DOI
Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145–71. doi: 10.1146/annurev.cellbio.16.1.145. PubMed DOI
Rangwala SM, Lazar MA. The dawn of the SPPARMs? Sci STKE. 2002;2002:pe9. PubMed
Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of chemical information and modeling. 2005;45:160–169. doi: 10.1021/ci049885e. PubMed DOI
Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI