Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires

. 2018 Mar ; 135 (1-3) : 329-336. [epub] 20171031

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29090426
Odkazy

PubMed 29090426
PubMed Central PMC5784008
DOI 10.1007/s11120-017-0455-y
PII: 10.1007/s11120-017-0455-y
Knihovny.cz E-zdroje

A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.

Zobrazit více v PubMed

Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96:113002. doi: 10.1103/PhysRevLett.96.113002. PubMed DOI

Ashraf KU (2014) Studies of the green sulphur bacterial reaction centre from Chlorobaculum tepidum. PhD thesis, University of Glasgow

Azai C, Kim K, Kondo T, et al. A heterogeneous tag-attachment to the homodimeric type 1 photosynthetic reaction center core protein in the green sulfur bacterium Chlorobaculum tepidum. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011;1807:803–812. doi: 10.1016/j.bbabio.2011.03.007. PubMed DOI

Badura A, Esper B, Ataka K, et al. Light-driven water splitting for (Bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol. 2006;82:1385–1390. doi: 10.1562/2006-07-14-RC-969. PubMed DOI

Bharadwaj P, Anger P, Novotny L. Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology. 2007

Blankenship RE (2002) Molecular mechanisms of photosynthesis, 1st edn. Blackwell Science

Brecht M, Hussels M, Nieder JB, et al. Plasmonic interactions of photosystem I with Fischer patterns made of Gold and Silver. Chem Phys. 2012;406:15–20. doi: 10.1016/j.chemphys.2012.05.005. DOI

Bujak L, Czechowski N, Piatkowski D, et al. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles. Appl Phys Lett. 2011;99:173701-173701-3. doi: 10.1063/1.3648113. DOI

Bujak Ł, Olejnik M, Brotosudarmo THP, et al. Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods. Phys Chem Chem Phys. 2014;16:9015–9022. doi: 10.1039/c3cp54364a. PubMed DOI

Czechowski N, Lokstein H, Kowalska D, et al. Large plasmonic fluorescence enhancement of cyanobacterial photosystem I coupled to silver island films. Appl Phys Lett. 2014;105:043701. doi: 10.1063/1.4891856. DOI

Das R, Kiley PJ, Segal M, et al. Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett. 2004;4:1079–1083. doi: 10.1021/nl049579f. DOI

den Hollander M-J, Magis JG, Fuchsenberger P, et al. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein–gold interactions. Langmuir. 2011;27:10282–10294. doi: 10.1021/la2013528. PubMed DOI

Friebe VM, Delgado JD, Swainsbury DJK, et al. Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv Funct Mater. 2016;26:285–292. doi: 10.1002/adfm.201504020. DOI

Frolov L, Rosenwaks Y, Richter S, et al. Photoelectric junctions between GaAs and photosynthetic reaction center protein. J Phys Chem C. 2008;112:13426–13430. doi: 10.1021/jp800586w. DOI

Govorov AO, Carmeli I. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett. 2007;7:620–625. doi: 10.1021/nl062528t. PubMed DOI

Kondo M, Iida K, Dewa T, et al. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules. 2012;13:432–438. doi: 10.1021/bm201457s. PubMed DOI

Kowalska D, Krajnik B, Olejnik M, et al. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires. Sci World J. 2013 PubMed PMC

Krassen H, Schwarze A, Friedrich B, et al. Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano. 2009;3:4055–4061. doi: 10.1021/nn900748j. PubMed DOI

Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer

Mackowski S. Hybrid nanostructures for efficient light harvesting. J Phys-Condes Matter. 2010;22:193102. doi: 10.1088/0953-8984/22/19/193102. PubMed DOI

Mackowski S, Wörmke S, Maier AJ, et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Lett. 2008;8:558–564. doi: 10.1021/nl072854o. PubMed DOI

Maćkowski S, Czechowski N, Ashraf KU, et al. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. FEBS Lett. 2016 PubMed

Mershin A, Matsumoto K, Kaiser L, et al. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep. 2012 PubMed PMC

Nagy L, Magyar M, Szabó T, et al. Photosynthetic machineries in nano-systems. Curr Protein Pept Sci. 2014;15:363–373. doi: 10.2174/1389203715666140327102757. PubMed DOI PMC

Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837:1553–1566. doi: 10.1016/j.bbabio.2013.12.013. PubMed DOI

Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press

Ocakoglu K, Krupnik T, Van DB, et al. Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater. 2014;24:7467–7477. doi: 10.1002/adfm.201401399. DOI

Olejnik M, Krajnik B, Kowalska D, et al. Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Appl Phys Lett. 2013;102:083703-083703-5. doi: 10.1063/1.4794171. DOI

Olson JM. The FMO protein. Photosyn Res. 2004;80:181–187. doi: 10.1023/B:PRES.0000030428.36950.43. PubMed DOI

Pessarakli M (ed) (2005) Handbook of photosynthesis, 2nd edn. CRC Press

Ray K, Badugu R, Lakowicz JR. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc. 2006;128:8998–8999. doi: 10.1021/ja061762i. PubMed DOI PMC

Stieger KR, Feifel SC, Lokstein H, Lisdat F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys Chem Chem Phys. 2014;16:15667–15674. doi: 10.1039/C4CP00935E. PubMed DOI

Sugiyama M, Fujii K, Nakamura S (2016) Solar to chemical energy conversion: theory and application. Springer International Publishing

Sun Y, Yin Y, Mayers BT, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and Poly(Vinyl Pyrrolidone) Chem Mater. 2002;14:4736–4745. doi: 10.1021/cm020587b. DOI

Swainsbury DJK, Friebe VM, Frese RN, Jones MR. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron. 2014;58:172–178. doi: 10.1016/j.bios.2014.02.050. PubMed DOI PMC

Szalkowski M, Ashraf KU, Lokstein H, et al. Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Photosyn Res. 2016;127:103–108. doi: 10.1007/s11120-015-0178-x. PubMed DOI

Takaichi S, Oh-oka H. Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: carotenoid glucoside esters, menaquinone and chlorophylls. Plant Cell Physiol. 1999;40:691–694. doi: 10.1093/oxfordjournals.pcp.a029594. DOI

Terasaki N. PS-I and PS-II on electrodes for energy generation and photo-sensor. Lect Notes Energy. 2016;32:419–449. doi: 10.1007/978-3-319-25400-5_25. DOI

Terasaki N, Yamamoto N, Tamada K, et al. Bio-photosensor: cyanobacterial photosystem I coupled with transistor via molecular wire. Biochimica et Biophysica Acta - Bioenergetics. 2007;1767:653–659. doi: 10.1016/j.bbabio.2006.11.008. PubMed DOI

Ventrella A, Catucci L, Agostiano A. Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry. 2010;79:43–49. doi: 10.1016/j.bioelechem.2009.10.008. PubMed DOI

Wientjes E, Renger J, Curto AG, et al. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching. Nat Commun. 2014 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...