Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29090426
PubMed Central
PMC5784008
DOI
10.1007/s11120-017-0455-y
PII: 10.1007/s11120-017-0455-y
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteriochlorophyll, Conjugation, Fluorescence, Plasmonic enhancement, Silver nanowires,
- MeSH
- chelátory chemie MeSH
- Chlorobi metabolismus MeSH
- fluorescenční spektrometrie MeSH
- fotosyntetická reakční centra (proteinové komplexy) metabolismus MeSH
- nanodráty chemie MeSH
- roztoky MeSH
- stříbro chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chelátory MeSH
- fotosyntetická reakční centra (proteinové komplexy) MeSH
- roztoky MeSH
- stříbro MeSH
A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.
Baltic Institute of Technology Al Zwycięstwa 96 98 Gdynia Poland
Department of Chemical Physics and Optics Charles University Ke Karlovu 3 Prague Czech Republic
Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44 52 Warsaw Poland
Zobrazit více v PubMed
Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006;96:113002. doi: 10.1103/PhysRevLett.96.113002. PubMed DOI
Ashraf KU (2014) Studies of the green sulphur bacterial reaction centre from Chlorobaculum tepidum. PhD thesis, University of Glasgow
Azai C, Kim K, Kondo T, et al. A heterogeneous tag-attachment to the homodimeric type 1 photosynthetic reaction center core protein in the green sulfur bacterium Chlorobaculum tepidum. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011;1807:803–812. doi: 10.1016/j.bbabio.2011.03.007. PubMed DOI
Badura A, Esper B, Ataka K, et al. Light-driven water splitting for (Bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol. 2006;82:1385–1390. doi: 10.1562/2006-07-14-RC-969. PubMed DOI
Bharadwaj P, Anger P, Novotny L. Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology. 2007
Blankenship RE (2002) Molecular mechanisms of photosynthesis, 1st edn. Blackwell Science
Brecht M, Hussels M, Nieder JB, et al. Plasmonic interactions of photosystem I with Fischer patterns made of Gold and Silver. Chem Phys. 2012;406:15–20. doi: 10.1016/j.chemphys.2012.05.005. DOI
Bujak L, Czechowski N, Piatkowski D, et al. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles. Appl Phys Lett. 2011;99:173701-173701-3. doi: 10.1063/1.3648113. DOI
Bujak Ł, Olejnik M, Brotosudarmo THP, et al. Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods. Phys Chem Chem Phys. 2014;16:9015–9022. doi: 10.1039/c3cp54364a. PubMed DOI
Czechowski N, Lokstein H, Kowalska D, et al. Large plasmonic fluorescence enhancement of cyanobacterial photosystem I coupled to silver island films. Appl Phys Lett. 2014;105:043701. doi: 10.1063/1.4891856. DOI
Das R, Kiley PJ, Segal M, et al. Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett. 2004;4:1079–1083. doi: 10.1021/nl049579f. DOI
den Hollander M-J, Magis JG, Fuchsenberger P, et al. Enhanced photocurrent generation by photosynthetic bacterial reaction centers through molecular relays, light-harvesting complexes, and direct protein–gold interactions. Langmuir. 2011;27:10282–10294. doi: 10.1021/la2013528. PubMed DOI
Friebe VM, Delgado JD, Swainsbury DJK, et al. Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv Funct Mater. 2016;26:285–292. doi: 10.1002/adfm.201504020. DOI
Frolov L, Rosenwaks Y, Richter S, et al. Photoelectric junctions between GaAs and photosynthetic reaction center protein. J Phys Chem C. 2008;112:13426–13430. doi: 10.1021/jp800586w. DOI
Govorov AO, Carmeli I. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett. 2007;7:620–625. doi: 10.1021/nl062528t. PubMed DOI
Kondo M, Iida K, Dewa T, et al. Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode. Biomacromolecules. 2012;13:432–438. doi: 10.1021/bm201457s. PubMed DOI
Kowalska D, Krajnik B, Olejnik M, et al. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires. Sci World J. 2013 PubMed PMC
Krassen H, Schwarze A, Friedrich B, et al. Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano. 2009;3:4055–4061. doi: 10.1021/nn900748j. PubMed DOI
Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer
Mackowski S. Hybrid nanostructures for efficient light harvesting. J Phys-Condes Matter. 2010;22:193102. doi: 10.1088/0953-8984/22/19/193102. PubMed DOI
Mackowski S, Wörmke S, Maier AJ, et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Lett. 2008;8:558–564. doi: 10.1021/nl072854o. PubMed DOI
Maćkowski S, Czechowski N, Ashraf KU, et al. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. FEBS Lett. 2016 PubMed
Mershin A, Matsumoto K, Kaiser L, et al. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep. 2012 PubMed PMC
Nagy L, Magyar M, Szabó T, et al. Photosynthetic machineries in nano-systems. Curr Protein Pept Sci. 2014;15:363–373. doi: 10.2174/1389203715666140327102757. PubMed DOI PMC
Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2014;1837:1553–1566. doi: 10.1016/j.bbabio.2013.12.013. PubMed DOI
Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press
Ocakoglu K, Krupnik T, Van DB, et al. Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater. 2014;24:7467–7477. doi: 10.1002/adfm.201401399. DOI
Olejnik M, Krajnik B, Kowalska D, et al. Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Appl Phys Lett. 2013;102:083703-083703-5. doi: 10.1063/1.4794171. DOI
Olson JM. The FMO protein. Photosyn Res. 2004;80:181–187. doi: 10.1023/B:PRES.0000030428.36950.43. PubMed DOI
Pessarakli M (ed) (2005) Handbook of photosynthesis, 2nd edn. CRC Press
Ray K, Badugu R, Lakowicz JR. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc. 2006;128:8998–8999. doi: 10.1021/ja061762i. PubMed DOI PMC
Stieger KR, Feifel SC, Lokstein H, Lisdat F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Phys Chem Chem Phys. 2014;16:15667–15674. doi: 10.1039/C4CP00935E. PubMed DOI
Sugiyama M, Fujii K, Nakamura S (2016) Solar to chemical energy conversion: theory and application. Springer International Publishing
Sun Y, Yin Y, Mayers BT, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and Poly(Vinyl Pyrrolidone) Chem Mater. 2002;14:4736–4745. doi: 10.1021/cm020587b. DOI
Swainsbury DJK, Friebe VM, Frese RN, Jones MR. Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron. 2014;58:172–178. doi: 10.1016/j.bios.2014.02.050. PubMed DOI PMC
Szalkowski M, Ashraf KU, Lokstein H, et al. Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Photosyn Res. 2016;127:103–108. doi: 10.1007/s11120-015-0178-x. PubMed DOI
Takaichi S, Oh-oka H. Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: carotenoid glucoside esters, menaquinone and chlorophylls. Plant Cell Physiol. 1999;40:691–694. doi: 10.1093/oxfordjournals.pcp.a029594. DOI
Terasaki N. PS-I and PS-II on electrodes for energy generation and photo-sensor. Lect Notes Energy. 2016;32:419–449. doi: 10.1007/978-3-319-25400-5_25. DOI
Terasaki N, Yamamoto N, Tamada K, et al. Bio-photosensor: cyanobacterial photosystem I coupled with transistor via molecular wire. Biochimica et Biophysica Acta - Bioenergetics. 2007;1767:653–659. doi: 10.1016/j.bbabio.2006.11.008. PubMed DOI
Ventrella A, Catucci L, Agostiano A. Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry. 2010;79:43–49. doi: 10.1016/j.bioelechem.2009.10.008. PubMed DOI
Wientjes E, Renger J, Curto AG, et al. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching. Nat Commun. 2014 PubMed PMC