Differential distribution of Y-chromosome haplotypes in Swiss and Southern European goat breeds

. 2017 Nov 23 ; 7 (1) : 16161. [epub] 20171123

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29170508
Odkazy

PubMed 29170508
PubMed Central PMC5701018
DOI 10.1038/s41598-017-15593-1
PII: 10.1038/s41598-017-15593-1
Knihovny.cz E-zdroje

The analysis of Y-chromosome variation has provided valuable clues about the paternal history of domestic animal populations. The main goal of the current work was to characterize Y-chromosome diversity in 31 goat populations from Central Eastern (Switzerland and Romania) and Southern Europe (Spain and Italy) as well as in reference populations from Africa and the Near East. Towards this end, we have genotyped seven single nucleotide polymorphisms (SNPs), mapping to the SRY, ZFY, AMELY and DDX3Y Y-linked loci, in 275 bucks from 31 populations. We have observed a low level of variability in the goat Y-chromosome, with just five haplotypes segregating in the whole set of populations. We have also found that Swiss bucks carry exclusively Y1 haplotypes (Y1A: 24%, Y1B1: 15%, Y1B2: 43% and Y1C: 18%), while in Italian and Spanish bucks Y2A is the most abundant haplotype (77%). Interestingly, in Carpathian goats from Romania the Y2A haplotype is also frequent (42%). The high Y-chromosome differentiation between Swiss and Italian/Spanish breeds might be due to the post-domestication spread of two different Near Eastern genetic stocks through the Danubian and Mediterranean corridors. Historical gene flow between Southern European and Northern African goats might have also contributed to generate such pattern of genetic differentiation.

Área de Genética y Reproducción Animal SERIDA Deva Camino de Rioseco 1225 Gijón 33394 Spain

Departament de Biologia Universitat de Girona 17003 Girona Spain

Departament de Ciència Animal i dels Aliments Facultat de Veterinària Universitat Autònoma de Barcelona 08193 Bellaterra Spain

Departamento de Genética Universidad de Córdoba 14071 Córdoba Spain

Department of Animal Genetics Center for Research in Agricultural Genomics CSIC IRTA UAB UB Campus Universitat Autònoma de Barcelona Bellaterra 08193 Spain

Department of Veterinary Medicine University of Sassari 07100 Sassari Italy

Dipartimento Agricoltura Ambiente e Alimenti Università Degli Studi Del Molise Campobasso Italy

Genetic Department Faculty of Agriculture Ain Shams University Cairo 11241 Egypt

Institut de l'Environnement et Recherches Agricoles 04 BP 8645 Ouagadougou 04 Burkina Faso

Institute of Genetics University of Bern Bern 3001 Switzerland

Institute of Life Sciences Faculty of Animal Science and Biotechnologies University of Agricultural Sciences and Veterinary Medicine 400372 Cluj Napoca Romania

Institute of Parasitology Biology Centre Czech Academy of Sciences 37005 České Budějovice Czechia

Instituto Canario de Investigaciones Agrarias Canary Islands Tenerife La Laguna 38108 Spain

Transgenesis Center of Excellence Isfahan Branch Islamic Azad University Isfahan Iran

Unitat de Races Autòctones Servei de Millora Agrària Son Ferriol 07198 Spain

University Mohammed 5 Agdal Faculty of Sciences 4 Av Ibn Battota Rabat Morocco

Zobrazit více v PubMed

Jobling MA, Tyler-Smith C. The human Y chromosome: an evolutionary marker comes of age. Nat. Rev. Genet. 2003;4:598–612. doi: 10.1038/nrg1124. PubMed DOI

Meadows JRS, Hawken RJ, Kijas JW. Nucleotide diversity on the ovine Y chromosome. Anim. Genet. 2004;35:379–85. doi: 10.1111/j.1365-2052.2004.01180.x. PubMed DOI

Kantanen J, et al. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus) Heredity (Edinb). 2009;103:404–15. doi: 10.1038/hdy.2009.68. PubMed DOI

Amills M, et al. Mitochondrial DNA diversity and origins of South and Central American goats. Anim. Genet. 2009;40:315–322. doi: 10.1111/j.1365-2052.2008.01837.x. PubMed DOI

Hellborg L, Ellegren H. Low levels of nucleotide diversity in mammalian Y chromosomes. Mol. Biol. Evol. 2004;21:158–163. doi: 10.1093/molbev/msh008. PubMed DOI

Pidancier N, Jordan S, Luikart G, Taberlet P. Evolutionary history of the genus Capra (Mammalia, Artiodactyla): discordance between mitochondrial DNA and Y-chromosome phylogenies. Mol. Phylogenet. Evol. 2006;40:739–49. doi: 10.1016/j.ympev.2006.04.002. PubMed DOI

Lenstra, J. A. Evolutionary and demographic history of sheep and goats suggested by nuclear mtDNA and Y-chromosome markers in Proceedings of the International Workshop ‘The role of biotechnology for the characterization of crop, forestry, animal and fishery genetic resources’ 97–100 (2005).

Cinar Kul B, et al. Y-chromosomal variation of local goat breeds of Turkey close to the domestication centre. J. Anim. Breed. Genet. 2015;132:449–453. doi: 10.1111/jbg.12154. PubMed DOI

Waki A, Sasazaki S, Kobayashi E, Mannen H. Paternal phylogeography and genetic diversity of East Asian goats. Anim. Genet. 2015;46:337–339. doi: 10.1111/age.12293. PubMed DOI

Pereira F, et al. A multiplex primer extension assay for the rapid identification of paternal lineages in domestic goat (Capra hircus): Laying the foundations for a detailed caprine Y chromosome phylogeny. Mol. Phylogenet. Evol. 2008;49:663–8. doi: 10.1016/j.ympev.2008.08.026. PubMed DOI

Naderi S, et al. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proc. Natl. Acad. Sci. 2008;105:17659–17664. doi: 10.1073/pnas.0804782105. PubMed DOI PMC

Pereira F, et al. Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa. Mol. Biol. Evol. 2009;26:2765–73. doi: 10.1093/molbev/msp200. PubMed DOI

Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16:10881–90. doi: 10.1093/nar/16.22.10881. PubMed DOI PMC

Librado P, Rozas J. DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI

Bandelt HJ, Forster P, Rohl A. median_joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI

Zhang M, et al. Y chromosome haplotype diversity of domestic sheep (Ovis aries) in northern Eurasia. Anim Genet. 2014;45:903–907. doi: 10.1111/age.12214. PubMed DOI

Wilson Sayres MA, Lohmueller KE, Nielsen R. Natural selection reduced diversity on human Y chromosomes. PLoS Genet. 2014;10:e1004064. doi: 10.1371/journal.pgen.1004064. PubMed DOI PMC

Ramírez O, et al. Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Mol. Biol. Evol. 2009;26:2061–2072. doi: 10.1093/molbev/msp118. PubMed DOI

Burren A, et al. Genetic diversity analyses reveal first insights into breed-specific selection signatures within Swiss goat breeds. Anim. Genet. 2016;47:727–739. doi: 10.1111/age.12476. PubMed DOI

Cañón J, et al. Geographical partitioning of goat diversity in Europe and the Middle East. Anim. Genet. 2006;37:327–334. doi: 10.1111/j.1365-2052.2006.01461.x. PubMed DOI

Pereira F, Amorim A. Origin and spread of goat pastoralism in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd. 2010

Porter, V., Alderson, L., Hall, S. J. G. & Sponenberg D. P. Goats in Mason’s World Encyclopedia of Livestock Breeds and Breeding 350–352 (CABI, Oxfordshire, United Kingdom, 2016).

Zeder MA. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. 2008;105:11597–11604. doi: 10.1073/pnas.0801317105. PubMed DOI PMC

Martínez A, et al. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach. Sci. Rep. 2016;6:38935. doi: 10.1038/srep38935. PubMed DOI PMC

Manunza, A. et al. A genome-wide perspective about the diversity and demographic history of seven Spanish goat breeds. Genet. Sel. Evol. 48–52, 10.1186/s12711-016-0229-6 (2016). PubMed PMC

Decker JE, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014;10:e1004254. doi: 10.1371/journal.pgen.1004254. PubMed DOI PMC

Lv FH, et al. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol. Biol. Evol. 2015;32:2515–2533. doi: 10.1093/molbev/msv139. PubMed DOI PMC

Lkhagvadorj D, Hauck M, Dulamsuren C, Tsogtbaatar J. Pastoral nomadism in the forest-steppe ecotone of the Mongolian Altai under a changing economy and a warming climate. Journal of Arid Environments. 2013;88:82–89. doi: 10.1016/j.jaridenv.2012.07.019. DOI

Luikart G, et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc. Natl. Acad. Sci. 2001;98:5927–5932. doi: 10.1073/pnas.091591198. PubMed DOI PMC

Underhill PA, Kivisild T. Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu. Rev. Genet. 2007;41:539–564. doi: 10.1146/annurev.genet.41.110306.130407. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...