Stability of local secondary structure determines selectivity of viral RNA chaperones
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
BB/E012558/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/P000037/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
29796667
PubMed Central
PMC6125681
DOI
10.1093/nar/gky394
PII: 4999239
Knihovny.cz E-zdroje
- MeSH
- genom virový genetika MeSH
- konformace nukleové kyseliny MeSH
- molekulární chaperony chemie genetika metabolismus MeSH
- molekulární modely MeSH
- proteiny vázající RNA chemie genetika metabolismus MeSH
- ptačí orthoreovirus genetika metabolismus MeSH
- RNA virová chemie genetika metabolismus MeSH
- sekundární struktura proteinů MeSH
- sekvence nukleotidů MeSH
- vazba proteinů MeSH
- virové nestrukturální proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- molekulární chaperony MeSH
- NS35 protein, rotavirus MeSH Prohlížeč
- proteiny vázající RNA MeSH
- RNA virová MeSH
- virové nestrukturální proteiny MeSH
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Astbury Centre for Structural Molecular Biology University of Leeds Leeds UK
Department of Chemistry Center for NanoScience Ludwig Maximilian University of Munich Munich Germany
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
School of Molecular and Cellular Biology University of Leeds Leeds UK
Zobrazit více v PubMed
Desselberger U. Rotaviruses. Virus Res. 2014; 190:75–96. PubMed
Mertens P. The dsRNA viruses. Virus Res. 2004; 101:3–13. PubMed
McDonald S.M., Nelson M.I., Turner P.E., Patton J.T.. Reassortment in segmented RNA viruses: mechanisms and outcomes. Nat. Rev. Microbiol. 2016; 14:448–460. PubMed PMC
McDonald S.M., Patton J.T.. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol. 2011; 19:136–144. PubMed PMC
Sung P.Y., Roy P.. Sequential packaging of RNA genomic segments during the assembly of bluetongue virus. Nucleic Acids Res. 2014; 42:13824–13838. PubMed PMC
Lourenco S., Roy P.. In vitro reconstitution of Bluetongue virus infectious cores. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:13746–13751. PubMed PMC
Anzola J. V, Xu Z.K., Asamizu T., Nuss D.L.. Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proc. Natl. Acad. Sci. U.S.A. 1987; 84:8301–8305. PubMed PMC
Tourís-Otero F., Cortez-San Martín M., Martínez-Costas J., Benavente J.. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of σNS and λA to μNS inclusions. J. Mol. Biol. 2004; 341:361–374. PubMed
Netherton C.L., Wileman T.. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr. Opin. Virol. 2011; 1:381–387. PubMed PMC
Silvestri L.S., Taraporewala Z.F., Patton J.T.. Rotavirus replication: Plus-Sense templates for Double-Stranded RNA synthesis are made in viroplasms. J. Virol. 2004; 78:7763–7774. PubMed PMC
Jiang X., Jayaram H., Kumar M., Ludtke S.J., Estes M.K., Venkataram Prasad B.V.. Cryoelectron microscopy structures of rotavirus NSP2-NSP5 and NSP2-RNA complexes: Implications for genome replication. J. Virol. 2006; 80:10829–10835. PubMed PMC
Taraporewala Z.F., Jiang X., Vasquez-Del Carpio R., Jayaram H., Prasad B.V.V., Patton J.T.. Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system. J. Virol. 2006; 80:7984–7994. PubMed PMC
Touris-Otero F., Martínez-Costas J., Vakharia V.N., Benavente J.. Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein σNS to these structures. Virology. 2004; 319:94–106. PubMed
Miller C.L., Broering T.J., Parker J.S.L., Arnold M.M., Nibert M.L.. Reovirus σNS protein localizes to inclusions through an association requiring the μNS amino terminus. J. Virol. 2003; 77:4566–4576. PubMed PMC
Desmet E.A., Anguish L.J., Parker J.S.L.. Virus-mediated compartmentalization of the host translational machinery. Mbio. 2014; 5:1–11. PubMed PMC
Miller C.L., Arnold M.M., Broering T.J., Hastings C.E., Nibert M.L.. Localization of mammalian orthoreovirus proteins to cytoplasmic factory-like structures via nonoverlapping regions of microNS. J. Virol. 2010; 84:867–882. PubMed PMC
Borodavka A., Dykeman E.C., Schrimpf W., Lamb D.C.. Protein-mediated RNA folding governs sequence-specific interactions between rotavirus genome segments. Elife. 2017; 6:1–22. PubMed PMC
Borodavka A., Ault J., Stockley P.G., Tuma R.. Evidence that avian reovirus σNS is an RNA chaperone: implications for genome segment assortment. Nucleic Acids Res. 2015; 43:7044–7057. PubMed PMC
Borodavka A., Singaram S.W., Stockley P.G., Gelbart W.M., Ben-Shaul A., Tuma R.. Sizes of long RNA molecules are determined by the branching patterns of their secondary structures. Biophys. J. 2016; 111:2077–2085. PubMed PMC
Konarev P. V, Volkov V. V, Sokolova A. V, Koch M.H.J., Svergun D.I.. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 2003; 36:1277–1282.
Konarev P.V., Petoukhov M.V., Volkov V.V., Svergun D.I.. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2006; 39:277–286. PubMed PMC
Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D.T., Konarev P.V., Svergun D.I.. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012; 45:342–350. PubMed PMC
Franke D., Svergun D.I.. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2009; 42:342–346. PubMed PMC
Volkov V.V., Svergun D.I.. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2003; 36:860–864. PubMed PMC
Morgner N., Robinson C.V.. Massign: An assignment strategy for maximizing information from the mass spectra of heterogeneous protein assemblies. Anal. Chem. 2012; 84:2939–2948. PubMed
Ruotolo B.T., Benesch J.L.P., Sandercock A.M., Hyung S.-J., Robinson C.V.. Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 2008; 3:1139–1152. PubMed
Bush M.F., Hall Z., Giles K., Hoyes J., Robinson C.V., Ruotolo B.T.. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 2010; 82:9557–9565. PubMed
Smith D., Knapman T., Campuzano I., Malham R., Berryman J., Radford S.E., Ashcroft A.. Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur. J. Mass Spectrom. 2009; 15:113–130. PubMed
Ruotolo B.T., Robinson C.V. Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 2006; 10:402–408. PubMed
Marklund E.G., Degiacomi M.T., Robinson C.V., Baldwin A.J., Benesch J.L.P.. Collision cross sections for structural proteomics. Structure. 2015; 23:791–799. PubMed
Davidovich C., Zheng L., Goodrich K.J., Cech T.R.. Promiscuous RNA binding by polycomb repressive complex 2. Nat. Struct. Mol. Biol. 2013; 20:1250–1257. PubMed PMC
Record M.T., Lohman T.M., de Haseth P.. Ion effects on ligand-nucleic acid interactions. J. Mol. Biol. 1976; 107:145–158. PubMed
Schuck P., Taraporewala Z., McPhie P., Patton J.T.. Rotavirus nonstructural protein NSP2 Self-assembles into octamers that undergo Ligand-induced conformational changes. J. Biol. Chem. 2001; 276:9679–9687. PubMed
Kudryavtsev V., Sikor M., Kalinin S., Mokranjac D., Seidel C.A.M., Lamb D.C.. Combining MFD and PIE for accurate single-pair förster resonance energy transfer measurements. Chemphyschem. 2012; 13:1060–1078. PubMed
Voith von Voithenberg L., Sánchez-Rico C., Kang H.-S., Madl T., Zanier K., Barth A., Warner L.R., Sattler M., Lamb D.C.. Recognition of the 3′ splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:E7169–E7175. PubMed PMC
Nir E., Michalet X., Hamadani K., Laurence T.A., Neuhauser D., Kovchegov Y., Weiss S.. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B. 2006; 110:22103–22124. PubMed PMC
Tomov T.E., Tsukanov R., Masoud R., Liber M., Plavner N., Nir E.. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophys. J. 2012; 102:1163–1173. PubMed PMC
Eggeling C., Fries J.R., Brand L., Gunther R., Seidel C.A.M.. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 1998; 95:1556–1561. PubMed PMC
Laurence T.A., Kwon Y., Yin E., Hollars C.W., Camarero J.A., Barsky D.. Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis. Biophys. J. 2007; 92:2184–2198. PubMed PMC
Schrimpf Waldemar. PAM: A framework for integrated analysis of imaging, Single-Molecule, and ensemble fluorescence data. Biophys. J. 2018; 114:1518–1528. PubMed PMC
Palacký J., Mojzeš P., Bok J.. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectrosc. 2011; 42:1528–1539.
Jayaram H., Taraporewala Z., Patton J.T., Prasad B.V.V.. Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature. 2002; 417:311–315. PubMed
Schiffrin B., Calabrese A.N., Devine P.W.A., Harris S.A., Ashcroft A.E., Brockwell D.J., Radford S.E.. Skp is a multivalent chaperone of outer-membrane proteins. Nat. Struct. Mol. Biol. 2016; 23:786–793. PubMed PMC
Ghetu A.F., Arthur D.C., Kerppola T.K., Glover J.N.M.. Probing FinO-FinP RNA interactions by site-directed protein-RNA crosslinking and in-gel FRET. RNA. 2002; 8:816–823. PubMed PMC
Radman-Livaja M., Biswas T., Mierke D., Landy A.. Architecture of recombination intermediates visualized by in-gel FRET of λ integrase–Holliday junction–arm DNA complexes. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:3913–3920. PubMed PMC
Gillian A.L., Schmaechel S.C., Livny J., Schiff L.A., Nibert M.L.. Reovirus protein σNS binds in multiple copies to single stranded RNA and shares properties with single stranded DNA binding proteins. J. Virol. 2000; 74:5939–5948. PubMed PMC
Draper D.E. A guide to ions and RNA structure. RNA. 2004; 10:335–343. PubMed PMC
Misra V.K., Draper D.E.. On the role of magnesium ions in RNA stability. Biopolymers. 1998; 48:113–135. PubMed
Fajardo T., Sung P.-Y., Roy P.. Disruption of specific RNA-RNA interactions in a Double-Stranded RNA virus inhibits genome packaging and virus infectivity. PLOS Pathog. 2015; 11:e1005321. PubMed PMC
Fajardo T.J., Al Shaikhahmed K., Roy P.. Generation of infectious RNA complexes in Orbiviruses: RNA-RNA interactions of genomic segments. Oncotarget. 2016; 7:72559–72570. PubMed PMC
Russell R. RNA misfolding and the action of chaperones. Front. Biosci. 2008; 13:1–20. PubMed PMC
Rajkowitsch L., Chen D., Stampfl S., Semrad K., Waldsich C., Mayer O., Jantsch M.F., Konrat R., Bläsi U., Schroeder R.. RNA chaperones, RNA annealers and RNA helicases. RNA Biol. 2007; 4:118–130. PubMed
Müller U.F., Göringer H.U.. Mechanism of the gBP21-mediated RNA / RNA annealing reaction: matchmaking and charge reduction. Nucleic Acids Res. 2002; 30:447–455. PubMed PMC
Peng Yi, Curtis J.E., Fang X., Woodson S.A.. Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proc. Natl. Acad. Sci. U.S.A. 2014; 111:17134–17139. PubMed PMC
Mayer O., Rajkowitsch L., Lorenz C., Konrat R., Schroeder R.. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res. 2007; 35:1257–1269. PubMed PMC
D’Souza V., Summers M.F.. Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature. 2004; 431:586–590. PubMed
Grossberger R., Mayer O., Waldsich C., Semrad K., Urschitz S., Schroeder R.. Influence of RNA structural stability on the RNA chaperone activity of the Escherichia coli protein StpA. Nucleic Acids Res. 2005; 33:2280–2289. PubMed PMC
Grohman J.K., Gorelick R.J., Lickwar C.R., Lieb J.D., Bower B.D., Znosko B.M., Weeks K.M.. A guanosine-centric mechanism for RNA chaperone function. Science. 2013; 340:190–195. PubMed PMC
Milles S., Jensen M.R., Communie G., Maurin D., Schoehn G., Ruigrok R.W.H., Blackledge M.. Self-assembly of measles virus nucleocapsid-like particles: kinetics and RNA sequence-dependence. Angew. Chem. Int. Ed. 2016; 55:9356–9360. PubMed PMC
Reguera J., Cusack S., Kolakofsky D.. Segmented negative strand RNA virus nucleoprotein structure. Curr. Opin. Virol. 2014; 5:7–15. PubMed
Durham A.C., Finch J.T., Klug A.. States of aggregation of tobacco mosaic virus protein. Nat. New Biol. 1971; 229:37–42. PubMed
Butler P.J.G., Klug A.. Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nat. New Biol. 1971; 229:47–50. PubMed
Mumtsidu E., Makhov A.M., Roessle M., Bathke A., Tucker P.A.. Structural features of the Bluetongue virus NS2 protein. J. Struct. Biol. 2007; 160:157–167. PubMed
Butan C., Tucker P.. Insights into the role of the non-structural protein 2 (NS2) in Bluetongue virus morphogenesis. Virus Res. 2010; 151:109–117. PubMed
Butan C., Van Der Zandt H., Tucker P.A.. Structure and assembly of the RNA binding domain of bluetongue virus non-structural protein 2. J. Biol. Chem. 2004; 279:37613–37621. PubMed
Gillian A.L., Nibert M.L.. Amino terminus of reovirus nonstructural protein sigma NS is important for ssRNA binding and nucleoprotein complex formation. Virology. 1998; 240:1–11. PubMed
Akita F., Higashiura A., Shimizu T., Pu Y., Suzuki M., Uehara-Ichiki T., Sasaya T., Kanamaru S., Arisaka F., Tsukihara T.. Crystallographic analysis reveals octamerization of viroplasm matrix protein P9-1 of Rice black streaked dwarf virus. J. Virol. 2012; 86:746–756. PubMed PMC
Wu J., Li J., Mao X., Wang W., Cheng Z., Zhou Y., Zhou X., Tao X.. Viroplasm protein P9-1 of Rice black-streaked dwarf virus preferentially binds to single-stranded RNA in its octamer form, and the central interior structure formed by this octamer constitutes the major RNA binding site. J. Virol. 2013; 87:12885–12899. PubMed PMC
Akita F., Miyazaki N., Hibino H., Shimizu T., Higashiura A., Uehara-Ichiki T., Sasaya T., Tsukihara T., Nakagawa A., Iwasaki K.. Viroplasm matrix protein Pns9 from rice gall dwarf virus forms an octameric cylindrical structure. J. Gen. Virol. 2011; 92:2214–2221. PubMed