• This record comes from PubMed

The heterologous expression potential of an acid-tolerant Talaromyces pinophilus β-glucosidase in Saccharomyces cerevisiae

. 2018 Nov ; 63 (6) : 725-734. [epub] 20180524

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
88180 National Research Foundation (ZA)

Links

PubMed 29797223
DOI 10.1007/s12223-018-0613-4
PII: 10.1007/s12223-018-0613-4
Knihovny.cz E-resources

A filamentous fungus displaying high cellulase activity was isolated from a compost heap with triticale (a wheat-rye hybrid) as the main constituent. It was preliminarily identified as a Talaromyces pinophilus species. A 2577 base pair β-glucosidase gene was cloned from complementary DNA and heterologously expressed in Saccharomyces cerevisiae. The recombinant β-glucosidase production profile was assessed and compared to that of the Saccharomycopsis fibuligera β-glucosidase which served as a benchmark. The enzyme was also characterised in terms of pH and temperature tolerance as well as response to inhibitors. Maximal extracellular β-glucosidase activity of 0.56 nkat/mg total protein was measured using p-nitrophenyl-β-D-glucopyranoside as substrate. The recombinant protein displayed a pH optimum of 4.0, and good thermostability as 70% of maximal enzyme activity was retained after 1 h at 60 °C. Activity of the recombinant β-glucosidase was adversely affected by the presence of glucose and ethanol at higher concentrations while xylose had no effect. The expression of the T. pinophilus β-glucosidase did not reach the same titres as for the benchmark; however, in the context of constructing a yeast strain for bioethanol production in a consolidated bioprocess, the enzyme may still show good potential.

See more in PubMed

PeerJ. 2013 Feb 26;1:e46 PubMed

Nature. 1970 Aug 15;227(5259):680-5 PubMed

Bioengineered. 2013 Jul-Aug;4(4):207-11 PubMed

Biotechnol Bioeng. 2004 Dec 30;88(7):797-824 PubMed

Int J Biochem. 1982;14(6):435-43 PubMed

Bioresour Technol. 2017 Dec;245(Pt B):1352-1361 PubMed

PLoS One. 2009 Sep 14;4(9):e7002 PubMed

Appl Microbiol Biotechnol. 2001 Jun;55(6):712-20 PubMed

J Biotechnol. 2005 Nov 21;120(3):284-95 PubMed

J Ind Microbiol Biotechnol. 2012 Oct;39(10):1445-52 PubMed

J Gen Microbiol. 1989 Nov;135(11):2791-8 PubMed

Microbiology. 2012 Jan;158(Pt 1):58-68 PubMed

FEMS Microbiol Lett. 2004 Nov 15;240(2):137-43 PubMed

Bioresour Technol. 2012 Jun;114:555-60 PubMed

PLoS One. 2016 Dec 21;11(12):e0167932 PubMed

J Bacteriol. 1979 Sep;139(3):761-9 PubMed

J Biotechnol. 2017 Mar 10;245:1-8 PubMed

Stud Mycol. 2014 Jun;78:175-341 PubMed

Sci Rep. 2016 Apr 15;6:24550 PubMed

Biotechnol Lett. 2008 Aug;30(8):1469-75 PubMed

J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed

Appl Microbiol Biotechnol. 2012 Apr;94(2):413-23 PubMed

Appl Biochem Biotechnol. 2004 Spring;113-116:1115-26 PubMed

Bioresour Technol. 2018 Apr;254:107-114 PubMed

Metab Eng. 2007 Jan;9(1):87-94 PubMed

Appl Biochem Biotechnol. 2008 May;149(2):169-82 PubMed

FEMS Microbiol Lett. 2007 May;270(1):162-70 PubMed

Biotechnol Biofuels. 2014 Apr 12;7:60 PubMed

Appl Environ Microbiol. 1988 Dec;54(12):3147-55 PubMed

Bioresour Technol. 2012 May;112:345-9 PubMed

Crit Rev Biotechnol. 2002;22(4):375-407 PubMed

J Biol Chem. 1951 Nov;193(1):265-75 PubMed

Enzyme Microb Technol. 2013 Mar 5;52(3):163-9 PubMed

Bioresour Technol. 2012 Nov;123:15-22 PubMed

J Agric Food Chem. 2003 Feb 26;51(5):1453-9 PubMed

Anal Biochem. 1991 May 15;195(1):45-50 PubMed

Nat Protoc. 2007;2(1):35-7 PubMed

Biotechnol Biofuels. 2009 Oct 01;2(1):24 PubMed

Science. 2010 Oct 1;330(6000):84-6 PubMed

Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents PubMed

Front Microbiol. 2016 Mar 03;7:241 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...