Solvent Effects on the Actinic Step of Donor-Acceptor Stenhouse Adduct Photoswitching
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29845699
PubMed Central
PMC6055754
DOI
10.1002/anie.201803058
Knihovny.cz E-resources
- Keywords
- donor-acceptor Stenhouse adducts, photoswitches, solvent effects, spectroscopy, visible light,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Donor-acceptor Stenhouse adducts (DASAs) are negative photochromes that switch with visible light and are highly promising for applications ranging from smart materials to biological systems. However, the strong solvent dependence of the photoswitching kinetics limits their application. The nature of the photoswitching mechanism in different solvents is key for addressing the solvatochromism of DASAs, but as yet has remained elusive. Here, we employ spectroscopic analyses and TD-DFT calculations to reveal changing solvatochromic shifts and energies of the species involved in DASA photoswitching. Time-resolved visible pump-probe spectroscopy suggests that the primary photochemical step remains the same, irrespective of the polarity and protic nature of the solvent. Disentangling the different factors determining the solvent-dependence of DASA photoswitching, presented here, is crucial for the rational development of applications in a wide range of different media.
CEISAM UMR CNRS 6230 BP 92208 2 Rue de la Houssinière 44322 Nantes Cedex 3 France
Dipartimento di Chimica Università di Perugia via Elce di Sotto 8 06100 Perugia Italy
European Laboratory for Non Linear Spectroscopy via N Carrara 1 50019 Sesto Fiorentino Italy
Istituto Nazionale di Ottica Largo Fermi 6 50125 Firenze Italy
See more in PubMed
Molecular Switches (Eds.: B. L. Feringa, W. R. Browne), Wiley-VCH, Weinheim, 2011.
Russew M. M., Hecht S., Adv. Mater. 2010, 22, 3348–3360. PubMed
Klajn R., Chem. Soc. Rev. 2014, 43, 148–184. PubMed
Tian H., Zhang J., Photochromic Materials: Preparation, Properties and Applications, Wiley-VCH, Weinheim, 2016.
Erbas-Cakmak S., Leigh D. A., McTernan C. T., Nussbaumer A. L., Chem. Rev. 2015, 115, 10081–10206. PubMed PMC
Natali M., Giordani S., Chem. Soc. Rev. 2012, 41, 4010–4029. PubMed
Fehrentz T., Schönberger M., Trauner D., Angew. Chem. Int. Ed. 2011, 50, 12156–12182; PubMed
Angew. Chem. 2011, 123, 12362–12390.
Szymański W., Beierle J. M., Kistemaker H. A. V., Velema W. A., Feringa B. L., Chem. Rev. 2013, 113, 6114–6178. PubMed
Velema W. A., Szymański W., Feringa B. L., J. Am. Chem. Soc. 2014, 136, 2178–2191. PubMed
Broichhagen J., Frank J. A., Trauner D., Acc. Chem. Res. 2015, 48, 1947–1960. PubMed
Dong M., Babalhavaeji A., Samanta S., Beharry A. A., Woolley G. A., Acc. Chem. Res. 2015, 48, 2662–2670. PubMed
Lerch M. M., Hansen M. J., van Dam G. M., Szymański W., Feringa B. L., Angew. Chem. Int. Ed. 2016, 55, 10978–10999; PubMed
Angew. Chem. 2016, 128, 11140–11163.
Reichardt C., Chem. Rev. 1994, 94, 2319–2358.
Solvents and Solvent Effects in Organic Chemistry (Eds.: C. Reichardt, T. Welton), Wiley-VCH, Weinheim, 2011.
Lerch M. M., Wezenberg S. J., Szymański W., Feringa B. L., J. Am. Chem. Soc. 2016, 138, 6344–6347. PubMed
Di Donato M., Lerch M. M., Lapini A., Laurent A. D., Iagatti A., Bussotti L., Ihrig S. P., Medved′ M., Jacquemin D., Szymański W., et al., J. Am. Chem. Soc. 2017, 139, 15596–15599. PubMed PMC
Helmy S., Leibfarth F. A., Oh S., Poelma J. E., Hawker C. J., Read de Alaniz J., J. Am. Chem. Soc. 2014, 136, 8169–8172. PubMed
Helmy S., Oh S., Leibfarth F. A., Hawker C. J., Read de Alaniz J., J. Org. Chem. 2014, 79, 11316–11329. PubMed
Weissleder R., Ntziachristos V., Nat. Med. 2003, 9, 123–128. PubMed
Bléger D., Hecht S., Angew. Chem. Int. Ed. 2015, 54, 11338–11349; PubMed
Angew. Chem. 2015, 127, 11494–11506.
Barachevsky V. A., Rev. J. Chem. 2017, 7, 334–371.
Afonso C., Gomes R. F. A., Coelho J. A. S., Chem. Eur. J. 2018, 10.1002/chem.201705851. PubMed DOI
Lerch M. M., Szymanski W., Feringa B. L., Chem. Soc. Rev. 2018, 47, 1910–1937. PubMed
Hemmer J. R., Poelma S. O., Treat N., Page Z. A., Dolinski N. D., Diaz Y. J., Tomlinson W., Clark K. D., Hooper J. P., Hawker C., et al., J. Am. Chem. Soc. 2016, 138, 13960–13966. PubMed
Mallo N., Brown P. T., Iranmanesh H., MacDonald T. S. C., Teusner M. J., Harper J. B., Ball G. E., Beves J. E., Chem. Commun. 2016, 52, 13576–13579. PubMed
Bull J. N., Carrascosa E., Mallo N., Scholz M. S., da Silva G., Beves J. E., Bieske E. J., J. Phys. Chem. Lett. 2018, 9, 665–671. PubMed
Nibbering E. T. J., Fidder H., Pines E., Annu. Rev. Phys. Chem. 2005, 56, 337–367. PubMed
Berera R., van Grondelle R., Kennis J. T. M., Photosynth. Res. 2009, 101, 105–118. PubMed PMC
Van Stokkum I. H. M., Larsen D. S., Van Grondelle R., Biochim. Biophys. Acta Bioenerg. 2004, 1657, 82–104. PubMed
Lerch M. M., Medved′ M., Lapini A., Laurent A. D., Iagatti A., Bussotti L., Szymański W., Buma W. J., Foggi P., Di Donato M., et al., J. Phys. Chem. A 2018, 122, 955–964. PubMed