City-level climate change mitigation in China
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29963621
PubMed Central
PMC6021142
DOI
10.1126/sciadv.aaq0390
PII: aaq0390
Knihovny.cz E-resources
- MeSH
- Climate Change * MeSH
- Environmental Monitoring * MeSH
- Carbon Dioxide analysis MeSH
- Climate * MeSH
- Industry MeSH
- Cities MeSH
- Geography MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- China MeSH
- Cities MeSH
- Names of Substances
- Carbon Dioxide MeSH
As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city-level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption-based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector-based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31%) are possible by updating a disproportionately small fraction of existing infrastructure.
Bartlett School of Construction and Project Management University College London London WC1E 7HB UK
College of Economics Jinan University Guangzhou 510632 China
Department of Earth System Science Tsinghua University Beijing 100080 China
Department of Earth System Science University of California Irvine Irvine CA 92697 USA
Department of Environmental Studies Masryk University Joštova 10 602 00 Brno Czech Republic
Department of Geographical Sciences University of Maryland College Park MD 20742 USA
Department of Politics and International Studies University of Cambridge Cambridge CB3 9DT UK
International Institute for Applied Systems Analysis Schlossplatz 1 A 2361 Laxenburg Austria
Potsdam Institute for Climate Impact Research 14473 Potsdam Germany
Resnick Sustainability Institute California Institute of Technology Pasadena CA 911125 USA
School of Environment Tsinghua University Beijing 100084 China
University of Chinese Academy of Sciences Beijing 100049 China
University of Potsdam Stockholm Resilience Centre Stockholm Sweden
See more in PubMed
The Chinese Government, “Enhanced actions on climate change: China’s intended nationally determined contributions” (2015); www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/33978/35364/xgzc35370/Document/1514539/1514539.htm.
Dhakal S., GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr. Opin. Environ. Sustain. 2, 277–283 (2010).
Ramaswami A., Hillman T., Janson B., Reiner M., Thomas G., A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ. Sci. Technol. 42, 6455–6461 (2008). PubMed
Hillman T., Ramaswami A., Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities. Environ. Sci. Technol. 44, 1902–1910 (2010). PubMed
Kennedy C., Steinberger J., Gasson B., Hansen Y., Hillman T., Havránek M., Pataki D., Phdungsilp A., Ramaswami A., Mendez G. V., Greenhouse gas emissions from global cities. Environ. Sci. Technol. 43, 7297–7302 (2009). PubMed
Kennedy C., Steinberger J., Gasson B., Hansen Y., Hillman T., Havránek M., Pataki D., Phdungsilp A., Ramaswami A., Mendez G. V., Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 38, 4828–4837 (2010).
Matese A., Gioli B., Vaccari F. P., Zaldei A., Miglietta F., Carbon dioxide emissions of the city center of Firenze, Italy: Measurement, evaluation, and source partitioning. J. Appl. Meteorol. Climatol. 48, 1940–1947 (2009).
D’Almeida Martins R., da Costa Ferreira L., Climate change action at the city level: Tales from two megacities in Brazil. Manag. Environ. Qual. 22, 344–357 (2011).
Ali G., Nitivattananon V., Exercising multidisciplinary approach to assess interrelationship between energy use, carbon emission and land use change in a metropolitan city of Pakistan. Renew. Sustain. Energy Rev. 16, 775–786 (2012).
Kennedy C. A., Ibrahim N., Hoornweg D., Low-carbon infrastructure strategies for cities. Nat. Clim. Change 4, 343–346 (2014).
Kennedy C. A., Stewart I., Facchini A., Cersosimo I., Mele R., Chen B., Uda M., Kansal A., Chiu A., Kim K.-g., Dubeux C., Lebre La Rovere E., Cunha B., Pincetl S., Keirstead J., Barles S., Pusaka S., Gunawan J., Adegbile M., Nazariha M., Hoque S., Marcotullio P. J., González Otharán F., Genena T., Ibrahim N., Farooqui R., Cervantes G., Sahin A. D., Energy and material flows of megacities. Proc. Natl. Acad. Sci. U.S.A. 112, 5985–5990 (2015). PubMed PMC
Creutzig F., Baiocchi G., Bierkandt R., Pichler P.-P., Seto K. C., Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. U.S.A. 112, 6283–6288 (2015). PubMed PMC
Dhakal S., Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 37, 4208–4219 (2009).
Wang H., Zhang R., Liu M., Bi J., The carbon emissions of Chinese cities. Atmos. Chem. Phys. 12, 6197–6206 (2012).
Ramaswami A., Jiang D., Tong K., Zhao J., Impact of the economic structure of cities on urban scaling factors: Implications for urban material and energy flows in China. J. Ind. Ecol. 22, 392–405 (2018).
Ramaswami A., Tong K., Fang A., Lal R. M., Nagpure A. S., Li Y., Yu H., Jiang D., Russell A. G., Shi L., Chertow M., Wang Y., Wang S., Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nat. Clim. Change 7, 736–742 (2017).
Parshall L., Gurney K., Hammer S. A., Mendoza D., Zhou Y., Geethakumar S., Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States. Energy Policy 38, 4765–4782 (2010).
Markolf S. A., Matthews H. S., Azevedo I. L., Hendrickson C., An integrated approach for estimating greenhouse gas emissions from 100 U.S. metropolitan areas. Environ. Res. Lett. 12, 024003 (2017).
Mi Z., Zhang Y., Guan D., Shan Y., Liu Z., Cong R., Yuan X.-C., Wei Y.-M., Consumption-based emission accounting for Chinese cities. Appl. Energy 184, 1073–1081 (2016).
Mi Z., Meng J., Guan D., Shan Y., Song M., Wei Y.-M., Liu Z., Hubacek K., Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017). PubMed PMC
B. Naughton, The Chinese Economy: Transitions and Growth (MIT Press, 2007).
Feng K., Davis S. J., Sun L., Li X., Guan D., Liu W., Liu Z., Hubacek K., Outsourcing CO2 within China. Proc. Natl. Acad. Sci. U.S.A. 110, 11654–11659 (2013). PubMed PMC
Tong D., Zhang Q., Davis S. J., Liu F., Zheng B., Geng G., Xue T., Li M., Hong C., Lu Z., Streets D. G., Guan D., He K., Targeted emission reductions from global super-polluting power plant units. Nat. Sustain. 1, 59–68 (2018).
NDRC, “National scheme on climate change (2014-2020)” (2014); www.sdpc.gov.cn/zcfb/zcfbtz/201411/t20141104_642612.html.
Shan Y., Guan D., Zheng H., Ou J., Li Y., Meng J., Mi Z., Liu Z., Zhang Q., China CO2 emission accounts 1997–2015. Sci. Data 5, 170201 (2018). PubMed PMC
MEP, “The state council issues action plan on prevention and control of air pollution introducing ten measures to improve air quality” (2013); http://english.sepa.gov.cn/News_service/infocus/201309/t20130924_260707.shtml.
NBS, China Energy Statistical Yearbook 2016 (China Statistics Press, 2016).
Davis S. J., Socolow R. H., Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).
IPCC, IPCC Guidelines for National Greenhouse Gas Inventories 2006 (Institute for Global Environmental Strategies, 2006).
Barrett J., Peters G., Wiedmann T., Scott K., Lenzen M., Roelich K., Le Quéré C., Consumption-based GHG emission accounting: A UK case study. Clim. Policy 13, 451–470 (2013).
Wiedmann T., A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 69, 211–222 (2009).
WRI, WBCSD, “The greenhouse gas protocol: A corporate accounting and reporting standard” (2014); www.ghgprotocol.org/standards/corporate-standard.
Liu Z., Feng K., Hubacek K., Liang S., Anadon L. D., Zhang C., Guan D., Four system boundaries for carbon accounts. Ecol. Model. 318, 118–125 (2015).
Pichler P.-P., Zwickel T., Chavez A., Kretschmer T., Seddon J., Weisz H., Reducing urban greenhouse gas footprints. Sci. Rep. 7, 14659 (2017). PubMed PMC
NDRC, “Guidelines for provincial greenhouse gas inventories” (2011); www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf.
Shan Y., Liu Z., Guan D., CO2 emissions from China’s lime industry. Appl. Energy 166, 245–252 (2016).
WRI, C40, ICLEI, “Global protocol for community-scale greenhouse gas emission inventories” (2014); www.iclei.org/activities/agendas/low-carbon-city/gpc.html.
ICLEI, “International local government greenhouse gas emissions analysis protocol” (2009); http://archive.iclei.org/index.php?id=ghgprotocol.
Yang F., Li Y., Xu J., Review on urban GHG inventory in China. Int. Rev. Spatial Plann. Sustain. Dev. 4, 46–59 (2016).
Cai B., Liang S., Zhou J., Wang J., Cao L., Qu S., Xu M., Yang Z., China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour. Conserv. Recycl. 129, 232–239 (2018).
Doll C. N. H., Muller J.-P., Elvidge C. D., Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. Ambio 29, 157–162 (2000).
Ma T., Zhou C., Pei T., Haynie S., Fan J., Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 124, 99–107 (2012).
Meng L., Graus W., Worrell E., Huang B., Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (defense meteorological satellite program’s operational linescan system) nighttime light imagery: Methodological challenges and a case study for China. Energy 71, 468–478 (2014).
Liu Z., Guan D., Wei W., Davis S. J., Ciais P., Bai J., Peng S., Zhang Q., Hubacek K., Marland G., Andres R. J., Crawford-Brown D., Lin J., Zhao H., Hong C., Boden T. A., Feng K., Peters G. P., Xi F., Liu J., Li Y., Zhao Y., Zeng N., He K., Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015). PubMed
NDRC, “First biennial update report on climate change” (2016); http://qhs.ndrc.gov.cn/dtjj/201701/W020170123346264208002.pdf.
NAQSIQ, “National industries classification (GB/T 4754-2011)” (2011); www.stats.gov.cn/statsinfo/auto2073/201406/t20140606_564743.html.
Shan Y., Guan D., Liu J., Mi Z., Liu Z., Liu J., Schroeder H., Cai B., Chen Y., Shao S., Zhang Q., Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 161, 1215–1225 (2017).
Umemiya C., White M., Amellina A., Shimizu N., National greenhouse gas inventory capacity: An assessment of Asian developing countries. Environ. Sci. Policy 78, 66–73 (2017).
DeFries R., Achard F., Brown S., Herold M., Murdiyarso D., Schlamadinger B., Souza C. Jr, Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Policy 10, 385–394 (2007).
Wu Y., Streets D. G., Wang S. X., Hao J. M., Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmos. Chem. Phys. 10, 2937–2946 (2010).
Zhao Y., Wang S., Duan L., Lei Y., Cao P., Hao J., Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmos. Environ. 42, 8442–8452 (2008).
Zhang Q., Streets D. G., He K., Wang Y., Richter A., Burrows J. P., Uno I., Jang C. J., Chen D., Yao Z., Lei Y., NOx emission trends for China, 1995–2004: The view from the ground and the view from space. J. Geophys. Res. Atmos. 112, D22306 (2007).
Karvosenoja N., Tainio M., Kupiainen K., Tuomisto J. T., Kukkonen J., Johansson M., Evaluation of the emissions and uncertainties of PM2.5 originated from vehicular traffic and domestic wood combustion in Finland. Boreal Environ. Res. 13, 465–474 (2008).
Wang S. X., Zhang C. Y., Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China. Sciencepap. Online 3, 329–333 (2008).
Cai B., Zhang L. X., Urban CO2 emissions in China: Spatial boundary and performance comparison. Energy Policy 66, 557–567 (2014).
Wang J., Cai B., Zhang L., Cao D., Liu L., Zhou Y., Zhang Z., Xue W., High resolution carbon dioxide emission gridded data for China derived from point sources. Environ. Sci. Technol. 48, 7085–7093 (2014). PubMed
J. G. J. Olivier, J. A. H. W. Peters, Uncertainties in global, regional and national emission inventories, in Non-CO2 Greenhouse Gases: Scientific Understanding, Control Options and Policy Aspects. Proceedings of the Third International Symposium, Maastricht, Netherlands (Millpress Science Publishers, 2002), pp. 525–540.
Marland G., Uncertainties in accounting for CO2 from fossil fuels. J. Ind. Ecol. 12, 136–139 (2008).
Nelson H. J., A service classification of American cities. Econ. Geogr 31, 189–210 (1955).
Edwards A. W. F., Cavalli-Sforza L. L., A method for cluster analysis. Biometrics, 362–375 (1965). PubMed
Ketchen D. J., Shook C. L., The application of cluster analysis in strategic management research: An analysis and critique. Strateg. Manage. J. 17, 441–458 (1996).
M. Lorr, Cluster Analysis for Social Scientists (Jossey-Bass Inc., 1983).
Eisen M. B., Spellman P. T., Brown P. O., Botstein D., Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95, 14863–14868 (1998). PubMed PMC
Mathematics Learning Support Centre, “Statistics: 3.1 cluster analysis” (2007); www.statstutor.ac.uk/resources/uploaded/clusteranalysis.pdf.
Singh A., Yadav A., Rana A., K-means with three different distance metrics. Int. J. Comput. Appl. 67, 13–17 (2013).
State Administration of Coal Mine Safety, China Coal Industry Yearbook 2011 (China Coal Industry Publishing House, 2011).
Pan K.-X., Zhu H.-X., Chang Z., Wu K.-H., Shan Y.-L., Liu Z.-X., Estimation of coal-related CO2 emissions: The case of China. Energy Environ. 24, 1309–1321 (2013).