Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29979710
PubMed Central
PMC6034803
DOI
10.1371/journal.pone.0199896
PII: PONE-D-17-41735
Knihovny.cz E-resources
- MeSH
- Biomimetics MeSH
- Stem Cells cytology physiology MeSH
- Cells, Cultured MeSH
- Middle Aged MeSH
- Humans MeSH
- Myocardium MeSH
- Mice MeSH
- Polyurethanes chemistry MeSH
- Guided Tissue Regeneration methods MeSH
- Heart Atria cytology MeSH
- Materials Testing MeSH
- Tissue Engineering * MeSH
- Tissue Scaffolds * MeSH
- Stem Cell Transplantation * MeSH
- Animals MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Polyurethanes MeSH
Scaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma treatment for acrylic acid surface grafting/polymerization and finally grafted with laminin-1 (PU-LN1) or gelatin (PU-G) by carbodiimide chemistry. LN1 is a cardiac niche extracellular matrix component and plays a key role in heart formation during embryogenesis, while G is a low-cost cell-adhesion protein, here used as a control functionalizing molecule. X-ray photoelectron spectroscopy analysis shows nitrogen percentage increase after functionalization. O1s and C1s core-level spectra and static contact angle measurements show changes associated with successful functionalization. ELISA assay confirms LN1 surface grafting. PU-G and PU-LN1 scaffolds both improve CPC adhesion, but LN1 functionalization is superior in promoting proliferation, protection from apoptosis and expression of differentiation markers for cardiomyocytes, endothelial and smooth muscle cells. PU-LN1 and PU scaffolds are biodegraded into non-cytotoxic residues. Scaffolds subcutaneously implanted in mice evoke weak inflammation and integrate with the host tissue, evidencing a significant blood vessel density around the scaffolds. PU-LN1 scaffolds show their superiority in driving CPC behavior, evidencing their promising role in myocardial regenerative medicine.
Department of Engineering Tissue Engineering Unit Università Campus Bio Medico di Roma Rome Italy
Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin Italy
Department of Molecular Biotechnology and Health Sciences University of Turin Turin Italy
Department of Public Health University of Naples 'Federico II' Naples Italy
Institute for Photonics and Nanotechnology National Research Council Rome Italy
See more in PubMed
Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2015: epidemiological update. Eur Heart J. 2015;36: 2673–2674. PubMed
Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114: 763–776. PubMed
Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265: 262–275. PubMed
Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95: 911–921. doi: 10.1161/01.RES.0000147315.71699.51 PubMed DOI
Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473: 326–335. doi: 10.1038/nature10147 PubMed DOI PMC
Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, et al. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol. 2007;176: 329–341. doi: 10.1083/jcb.200603014 PubMed DOI PMC
Itzhaki-Alfia A, Leor J, Raanani E, Sternik L, Spiegelstein D, Netser S, et al. Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation. 2009;120: 2559–2566. doi: 10.1161/CIRCULATIONAHA.109.849588 PubMed DOI
Gambini E, Pompilio G, Biondi A, Alamanni F, Capogrossi MC, Agrifoglio M, et al. C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovasc Res. 2010;89: 362–373. doi: 10.1093/cvr/cvq292 PubMed DOI
Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 2013;12: 689–698. doi: 10.1016/j.stem.2013.05.008 PubMed DOI PMC
Hayashi M, Li TS, Ito H, Mikamo A, Hamano K. Comparison of intramyocardial and intravenous routes of delivering bone marrow cells for the treatment of ischemic heart disease: an experimental study. Cell Transplant. 2004;13: 639–647. PubMed
Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103: 1204–1219. doi: 10.1161/CIRCRESAHA.108.176826 PubMed DOI PMC
Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci. 2013;13: 984–1019. doi: 10.1002/mabi.201200483 PubMed DOI
Boffito M, Sartori S, Ciardelli G. Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polym Int. 2014;63: 2–11.
Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13: 547–557. doi: 10.1038/nmat3937 PubMed DOI PMC
Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;31: 1880–1885. PubMed
Chitteti RB, Cheng YH, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N, et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood. 2010;115: 3239–3248. doi: 10.1182/blood-2009-09-246173 PubMed DOI PMC
Mauretti A, Spaans S, Bax NAM, Sahlgren C, Bouten CVC. Stem Cells Int. 2017;2017: 7471582 doi: 10.1155/2017/7471582 PubMed DOI PMC
Kim DH, Kshitiz, Smith RR, Kim P, Ahn EH, Kim HN, et al. Integr Biol. 2012;4: 1019–1033. PubMed
Mengsteab PY, Uto K, Smith AST, Frankel S, Fisher E, Nawas Z, et al. Biomaterials 2016;86: 1–10. doi: 10.1016/j.biomaterials.2016.01.062 PubMed DOI PMC
Smith A, Yoo H, Yi H, Ahn EH, Lee JH, Shao G, et al. Chem. Commun. 2017;53: 7412–7415. PubMed PMC
Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, et al. Biomaterials 2015;61: 339–348. doi: 10.1016/j.biomaterials.2015.05.005 PubMed DOI
Ciocci M, Mochi F, Carotenuto F, Di Giovanni E, Prosposito P, Francini R, et al. Stem Cells Dev. 2017;26: 1438–1447. doi: 10.1089/scd.2017.0051 PubMed DOI
Forte G, Carotenuto F, Pagliari F, Pagliari S, Cossa P, Fiaccavento R et al. Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells. 2008;26: 2093–2103. doi: 10.1634/stemcells.2008-0061 PubMed DOI
Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33: 1782–1790. doi: 10.1016/j.biomaterials.2011.11.003 PubMed DOI
Cristallini C, Cibrario Rocchietti E, Accomasso L, Folino A, Gallina C, Muratori L, et al. The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. Biomaterials. 2014;35: 92–104. doi: 10.1016/j.biomaterials.2013.09.058 PubMed DOI
Castaldo C, Di Meglio F, Miraglia R, Sacco AM, Romano V, Bancone C, et al. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. BioMed Res Int. 2013;2013: 352370 doi: 10.1155/2013/352370 PubMed DOI PMC
Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, et al. CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells. 2008;26: 1723–1731. doi: 10.1634/stemcells.2007-0732 PubMed DOI
Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004;20: 255–284. doi: 10.1146/annurev.cellbio.20.010403.094555 PubMed DOI
De Arcangelis A, Neuville AP, Boukamel R, Lefebvre O, Kedinger M, Simon-Assmann P. Inhibition of laminin alpha 1-chain expression leads to alteration of basement membrane assembly and cell differentiation. J Cell Biol. 1996;133: 417–430. PubMed PMC
Hsu SH, Kuo WC, Chen YT, Yen CT, Chen YF, Chen KS, et al. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater. 2013;9: 6606–6615. doi: 10.1016/j.actbio.2013.01.025 PubMed DOI
Rangappa N, Romero A, Nelson KD, Eberhart RC, Smith GM. Laminin-coated poly(L-lactide) filaments induce robust neurite growth while providing directional orientation. J Biomed Mater Res. 2000;51: 625–634. PubMed
Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z, et al. Porous nanofibrous poly(L-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater. 2015;26: 105–114. doi: 10.1016/j.actbio.2015.08.017 PubMed DOI PMC
Liau B, Christoforou N, Leong KW, Bursac N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials. 2011;32: 9180–9187. doi: 10.1016/j.biomaterials.2011.08.050 PubMed DOI PMC
Cao F, van der Bogt KE, Sadrzadeh A, Xie X, Sheikh AY, Wang H, et al. Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev. 2007;16: 883–891. doi: 10.1089/scd.2007.0160 PubMed DOI
Chiono V, Mozetic P, Boffito M, Sartori S, Gioffredi E, Silvestri A, et al. Polyurethane-based scaffolds for myocardial tissue engineering. Interface Focus. 2014;4: 20130045 doi: 10.1098/rsfs.2013.0045 PubMed DOI PMC
Sartori S, Boffito M, Serafini P, Caporale A, Silvestri A, Bernardi E, et al. Synthesis and structure–property relationship of polyester-urethanes and their evaluation for the regeneration of contractile tissues. React Funct Polym. 2013;73: 1366–1376.
Rainer A, Mozetic P, Giannitelli SM, Accoto D, De Porcellinis S, Guglielmelli E, et al. Computer-aided tissue engineering for bone regeneration. Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob); 2012 June 24–27; Rome, Italy.
Rainer A, Giannitelli SM, Accoto D, De Porcellinis S, Guglielmelli E, Trombetta M. Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties. Ann Biomed Eng. 2012;40: 966–975. doi: 10.1007/s10439-011-0465-4 PubMed DOI
Boffito M, Bernardi E, Sartori S, Ciardelli G, Sassi MP. A mechanical characterization of polymer scaffolds and films at the macroscale and nanoscale. J Biomed Mater Res A. 2015;103: 162–169. doi: 10.1002/jbm.a.35147 PubMed DOI
Sartori S, Rechichi A, Vozzi G, D’Acunto M, Heine E, Giusti P, et al. Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers. React Funct Polym. 2008;68: 809–821.
Ferreira AM, Mattu C, Ranzato E, Ciardelli G. Bioinspired porous membranes containing polymer nanoparticles for wound healing. J Biomed Mater Res A. 2014;102: 4394–4405. doi: 10.1002/jbm.a.35121 PubMed DOI
Ferreira AM, Carmagnola I, Chiono V, Gentile P, Fracchia L, Ceresa C, et al. Surface modification of poly(dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan-Rose Bengal photosensitizer. Surf Coat Technol. 2013;223: 92–97.
Giannitelli SM, Basoli F, Mozetic P, Piva P, Bartuli FN, Luciani F, et al. Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration. Mater Sci Eng C Mater Biol Appl. 2015;51: 329–335. doi: 10.1016/j.msec.2015.03.002 PubMed DOI
Seyedmahmoud R, Rainer A, Mozetic P, Giannitelli SM, Trombetta M, Traversa E, et al. A primer of statistical methods for correlating parameters and properties of electrospun poly(L-lactide) scaffolds for tissue engineering—PART 1: design of experiments. J Biomed Mater Res A. 2015;103: 91–102. doi: 10.1002/jbm.a.35153 PubMed DOI
Primer3. Version 0.4.0 [software]. Available from: http://bioinfo.ut.ee (cited 2017 June 15).
Sbroggiò M, Carnevale D, Bertero A, Cifelli G, De Blasio E, Mascio G, et al. IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload. Cardiovasc Res. 2011;91: 456–464. doi: 10.1093/cvr/cvr103 PubMed DOI PMC
Boffito M, Gioffredi E, Chiono V, Calzone S, Ranzato E, Martinotti S, et al. Novel polyurethane-based thermosensitive hydrogels as drug release and tissue engineering platforms: Design and in vitro characterization. Polym Int. 2016;65: 756–769.
Zander NE, Orlicki JA, Rawlett AM, Beebe TP Jr. Quantification of protein incorporated into electrospun polycaprolactone tissue engineering scaffolds. ACS Appl Mater Interfaces. 2012;4: 2074–20181. doi: 10.1021/am300045y PubMed DOI
Zander NE, Orlicki JA, Rawlett AM, Beebe TP Jr. Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth. Biointerphases. 2010;5: 149–158. doi: 10.1116/1.3526140 PubMed DOI
Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin—a glycoprotein from basement membranes. J Biol Chem. 1979;254: 9933–9937. PubMed
Dubey G, Mequanint K. Conjugation of fibronectin onto three-dimensional porous scaffolds for vascular tissue engineering applications. Acta Biomater. 2011;7: 1114–1125. doi: 10.1016/j.actbio.2010.11.010 PubMed DOI
Xu C, Huang Y, Wu J, Tang L, Hong Y. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS Appl Mater Inter. 2015;7: 20377–20388. PubMed PMC
Silvestri S, Sartori S, Boffito M, Mattu C, Di Rienzo AM, Boccafoschi F, et al. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes. J Biomed Mater Res B. 2014;102: 1002–1013. PubMed
Desmet T, Billiet T, Berneel E, Cornelissen R, Schaubroeck D, Schacht E, et al. Macromol Biosci. 2010;10: 1484–1494. doi: 10.1002/mabi.201000147 PubMed DOI
Kang SM, Hwang NS, Yeom J, Park SY, Messersmith PB, Choi IS, et al. Adv Funct Mater. 2012;22: 2949–2955. doi: 10.1002/adfm.201200177 PubMed DOI PMC
Kailasa SK, Wu HF. Analyst 2012;137: 1629–1638. doi: 10.1039/c2an16008k PubMed DOI
Xie J, Michael PL, Zhong S, Ma B, MacEwan MR, Lim CT. J Biomed Mater Res A. 2012;100A: 928–938. PubMed
Tsui JH, Janebodin K, Ieronimakis N, Yama DMP, Yang HS, Chavanachat R, et al. ACS Nano 2017;11, 11954–11968. doi: 10.1021/acsnano.7b00186 PubMed DOI PMC
Cauich-Rodríguez JV, Chan-Chan LH, Hernandez-Sánchez F, Cervantes-Uc JM. Degradation of polyurethanes for cardiovascular applications In: Pignatello R, editor. Advances in Biomaterials Science and Biomedical Applications. Croacia: InTech; 2013. pp. 51–82.
Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, et al. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014; 35: 970–982. doi: 10.1016/j.biomaterials.2013.10.045 PubMed DOI
Boccardo S, Gaudiello E, Melly LM, Cerino G, Ricci D, Martin I, et al. Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomater. 2016;42: 127–135. doi: 10.1016/j.actbio.2016.07.041 PubMed DOI
Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD 3rd. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed Mater. 2015;10: 034105 doi: 10.1088/1748-6041/10/3/034105 PubMed DOI PMC