Fate of mesoangioblasts in a vaginal birth injury model: influence of the route of administration
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30006567
PubMed Central
PMC6045600
DOI
10.1038/s41598-018-28967-w
PII: 10.1038/s41598-018-28967-w
Knihovny.cz E-resources
- MeSH
- Microscopy, Fluorescence MeSH
- Genetic Vectors chemistry genetics MeSH
- Wound Healing * MeSH
- Injections, Intralesional MeSH
- Injections, Intra-Arterial MeSH
- Injections, Intravenous MeSH
- Intravital Microscopy MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Luciferases, Firefly chemistry genetics MeSH
- Rats, Sprague-Dawley MeSH
- Primary Cell Culture MeSH
- Pregnancy MeSH
- Mesenchymal Stem Cell Transplantation methods MeSH
- Vagina injuries MeSH
- Delivery, Obstetric adverse effects MeSH
- Green Fluorescent Proteins chemistry genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Luciferases, Firefly MeSH
- Green Fluorescent Proteins MeSH
Currently cell therapy is considered as an experimental strategy to assist the healing process following simulated vaginal birth injury in rats, boosting the functional and morphologic recovery of pelvic floor muscles and nerves. However, the optimal administration route and dose still need to be determined. Mesangioblasts theoretically have the advantage that they can differentiate in skeletal and smooth muscle. We investigated the fate of mesoangioblasts transduced with luciferase and green fluorescent protein reporter genes (rMABseGFP/fLUC) using bioluminescence, immunofluorescence and RT-PCR in rats undergoing simulated birth injury. rMABseGFP/fLUC were injected locally, intravenously and intra-arterially (common iliacs and aorta). Intra-arterial delivery resulted in the highest amount of rMABseGFP/fLUC in the pelvic organs region and in a more homogeneous distribution over all relevant pelvic organs. Sham controls showed that the presence of the injury is important for recruitment of intra-arterially injected rMABseGFP/fLUC. Injection through the aorta or bilaterally in the common iliac arteries resulted in comparable numbers of rMABseGFP/fLUC in the pelvic organs, yet aortic injection was faster and gave less complications.
Centre for Surgical Technologies Group Biomedical Sciences KU Leuven Leuven Belgium
Department of Urology University Hospitals Leuven Leuven Belgium
Laboratory for Molecular Virology and Gene Therapy KU Leuven Flanders Belgium
Molecular Small Animal Imaging Center KU Leuven 3000 Leuven Belgium
Pelvic Floor Unit University Hospitals KU Leuven Leuven Belgium
See more in PubMed
DeLancey, J. O. L., Kane Low, L., Miller, J. M., Patel, D. A. & Tumbarello, J. A. Graphic integration of causal factors of pelvic floor disorders: an integrated life span model. Am. J. Obstet. Gynecol. 199 (2008). PubMed PMC
Sindhwani N, et al. In vivo evidence of significant levator-ani muscle stretch on MR images of a live childbirth. Am. J. Obstet. Gynecol. 2017;217:194.e1–194.e8. doi: 10.1016/j.ajog.2017.04.014. PubMed DOI
Conner E, et al. Vaginal delivery and serum markers of ischemia/reperfusion injury. Int. J. Gynaecol. Obstet. 2006;94:96–102. doi: 10.1016/j.ijgo.2006.04.039. PubMed DOI
Lien K-C, Mooney B, DeLancey JOL, Ashton-Miller JA. Levator ani muscle stretch induced by simulated vaginal birth. Obstet. Gynecol. 2004;103:31–40. doi: 10.1097/01.AOG.0000109207.22354.65. PubMed DOI PMC
Callewaert G, et al. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat. Rev. Urol. 2017;14:373–385. doi: 10.1038/nrurol.2017.42. PubMed DOI
Bortolini MAT, Drutz HP, Lovatsis D, Alarab M. Vaginal delivery and pelvic floor dysfunction: Current evidence and implications for future research. Int. Urogynecol. J. 2010;21:1025–1030. doi: 10.1007/s00192-010-1146-9. PubMed DOI
Peters KM, et al. Autologous muscle derived cells for treatment of stress urinary incontinence in women. J. Urol. 2014;192:469–76. doi: 10.1016/j.juro.2014.02.047. PubMed DOI
Shirvan M, Rohan P, Soltani S. A Novel Cell Therapy for Stress Urinary Incontinence, Midterm outcome. Neurourol Urodyn. 2017;36:1214–1216. doi: 10.1002/nau.23068. PubMed DOI
Carr LK, et al. Autologous muscle derived cell therapy for stress urinary incontinence: A prospective, dose ranging study. J. Urol. 2013;189:595–601. doi: 10.1016/j.juro.2012.09.028. PubMed DOI
Dissaranan C, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23:1395–1406. doi: 10.3727/096368913X670921. PubMed DOI PMC
Deng K, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am. J. Physiol. Renal Physiol. 2015;308:F92–F100. doi: 10.1152/ajprenal.00510.2014. PubMed DOI PMC
Dai M, Xu P, Hou M, Teng Y, Wu Q. In vivo imaging of adipose-derived mesenchymal stem cells in female nude mice after simulated childbirth injury. Exp. Ther. Med. 2015;9:372–376. doi: 10.3892/etm.2014.2092. PubMed DOI PMC
Kean, T. J., Lin, P., Caplan, A. I. & Dennis, J. E. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013 (2013). PubMed PMC
Walczak P, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39:1569–1574. doi: 10.1161/STROKEAHA.107.502047. PubMed DOI PMC
Toupet K, et al. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. PLoS One. 2015;10:1–13. doi: 10.1371/journal.pone.0114962. PubMed DOI PMC
Cruz M, et al. Pelvic Organ Distribution of Mesenchymal Stem Cells Injected Intravenously after Simulated Childbirth Injury in Female Rats. Obstet. Gynecol. Int. 2011;2012:1–7. doi: 10.1155/2012/612946. PubMed DOI PMC
Sadeghi Z, et al. Mesenchymal stem cell therapy in a rat model of birth-trauma injury: functional improvements and biodistribution. Int. Urogynecol. J. 2016;27:291–300. doi: 10.1007/s00192-015-2831-5. PubMed DOI PMC
Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 2004;86–A:1541–58. doi: 10.2106/00004623-200407000-00029. PubMed DOI
Ma S, et al. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25. doi: 10.1038/cdd.2013.158. PubMed DOI PMC
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 2016;7:7. doi: 10.1186/s13287-015-0271-2. PubMed DOI PMC
Cai J, et al. Maximum efficacy of mesenchymal stem cells in rat model of renal ischemia-reperfusion injury: Renal artery administration with optimal numbers. PLoS One. 2014;9:1–8. PubMed PMC
Sampaolesi M. Cell Therapy of -Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts. Science (80-.). 2003;301:487–492. doi: 10.1126/science.1082254. PubMed DOI
Lin P, et al. Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Mol. Ther. 2014;22:160–168. doi: 10.1038/mt.2013.221. PubMed DOI PMC
Sampaolesi M, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006;444:574–579. doi: 10.1038/nature05282. PubMed DOI
Minasi MG, et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development. 2002;129:2773–2783. PubMed
Holvoet B, et al. Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports. 2015;5:1183–1195. doi: 10.1016/j.stemcr.2015.10.018. PubMed DOI PMC
Trela JM, et al. Scintigraphic comparison of intra-arterial injection and distal intravenous regional limb perfusion for administration of mesenchymal stem cells to the equine foot. Equine Vet. J. 2014;46:479–483. doi: 10.1111/evj.12137. PubMed DOI
Skuk D, Tremblay JP. First study of intra-arterial delivery of myogenic mononuclear cells to skeletal muscles in primates. Cell Transplant. 2014;23(Suppl 1):S141–50. doi: 10.3727/096368914X685032. PubMed DOI
Fong E, Chan C, Goodman S. Stem cell homing in musculoskeletal injury. Biomaterials. 2011;32:395–409. doi: 10.1016/j.biomaterials.2010.08.101. PubMed DOI PMC
Hocking AM. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wound. Adv. Wound Care. 2015;4:623–630. doi: 10.1089/wound.2014.0579. PubMed DOI PMC
Shinohara K, et al. Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair. J. Orthop. Res. 2011;29:1064–1069. doi: 10.1002/jor.21374. PubMed DOI
Wood, H. M. et al. Cytokine Expression After Vaginal Distension of. 180, 753–759 (2009). PubMed PMC
Vricella, G. J. et al. Expression of monocyte chemotactic protein 3 following simulated birth trauma in a murine model of obesity. Urology76, (2010). PubMed PMC
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: Strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine. 2014;9:2539–2555. PubMed PMC
Jizong Gao J, Dennis E, Muzic RF, Lundberg M, Caplan AI. The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs. 2001;7080:12–20. PubMed
Damaser MS, Whitbeck C, Chichester P, Levin RM. Effect of vaginal distension on blood flow and hypoxia of urogenital organs of the female rat. J. Appl. Physiol. 2005;98:1884–1890. doi: 10.1152/japplphysiol.01071.2004. PubMed DOI
Sole A, et al. Scintigraphic evaluation of intra-arterial and intravenous regional limb perfusion of allogeneic bone marrow-derived mesenchymal stem cells in the normal equine distal limb using 99mTc-HMPAO. Equine Vet. J. 2012;44:594–599. doi: 10.1111/j.2042-3306.2011.00530.x. PubMed DOI
Liao L, et al. Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics. 2017;7:106–116. doi: 10.7150/thno.16911. PubMed DOI PMC
Guttinger M, Tafi E, Battaglia M, Coletta M, Cossu G. Allogeneic mesoangioblasts give rise to alpha-sarcoglycan expressing fibers when transplanted into dystrophic mice. Exp. Cell Res. 2006;312:3872–3879. doi: 10.1016/j.yexcr.2006.08.012. PubMed DOI
Noviello M, et al. Inflammation Converts Human Mesoangioblasts Into Targets of Alloreactive Immune Responses: Implications for Allogeneic Cell Therapy of DMD. Mol. Ther. 2014;22:1342–1352. doi: 10.1038/mt.2014.62. PubMed DOI PMC
Huber BC, et al. Costimulation-adhesion blockade is superior to cyclosporine a and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation. Stem Cells. 2013;31:2354–2363. doi: 10.1002/stem.1501. PubMed DOI PMC
Quattrocelli, M. et al. Mouse and human mesoangioblasts: isolation and characterization from adult skeletal muscles. No Title. in Methods in Molecular Biology 65–76 (2012). PubMed
Jiang H-H, et al. NIH Public Access. Neurol. Urodynamics. 2009;28:229–235. doi: 10.1002/nau.20632. PubMed DOI