• This record comes from PubMed

Fate of mesoangioblasts in a vaginal birth injury model: influence of the route of administration

. 2018 Jul 13 ; 8 (1) : 10604. [epub] 20180713

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30006567
PubMed Central PMC6045600
DOI 10.1038/s41598-018-28967-w
PII: 10.1038/s41598-018-28967-w
Knihovny.cz E-resources

Currently cell therapy is considered as an experimental strategy to assist the healing process following simulated vaginal birth injury in rats, boosting the functional and morphologic recovery of pelvic floor muscles and nerves. However, the optimal administration route and dose still need to be determined. Mesangioblasts theoretically have the advantage that they can differentiate in skeletal and smooth muscle. We investigated the fate of mesoangioblasts transduced with luciferase and green fluorescent protein reporter genes (rMABseGFP/fLUC) using bioluminescence, immunofluorescence and RT-PCR in rats undergoing simulated birth injury. rMABseGFP/fLUC were injected locally, intravenously and intra-arterially (common iliacs and aorta). Intra-arterial delivery resulted in the highest amount of rMABseGFP/fLUC in the pelvic organs region and in a more homogeneous distribution over all relevant pelvic organs. Sham controls showed that the presence of the injury is important for recruitment of intra-arterially injected rMABseGFP/fLUC. Injection through the aorta or bilaterally in the common iliac arteries resulted in comparable numbers of rMABseGFP/fLUC in the pelvic organs, yet aortic injection was faster and gave less complications.

See more in PubMed

DeLancey, J. O. L., Kane Low, L., Miller, J. M., Patel, D. A. & Tumbarello, J. A. Graphic integration of causal factors of pelvic floor disorders: an integrated life span model. Am. J. Obstet. Gynecol. 199 (2008). PubMed PMC

Sindhwani N, et al. In vivo evidence of significant levator-ani muscle stretch on MR images of a live childbirth. Am. J. Obstet. Gynecol. 2017;217:194.e1–194.e8. doi: 10.1016/j.ajog.2017.04.014. PubMed DOI

Conner E, et al. Vaginal delivery and serum markers of ischemia/reperfusion injury. Int. J. Gynaecol. Obstet. 2006;94:96–102. doi: 10.1016/j.ijgo.2006.04.039. PubMed DOI

Lien K-C, Mooney B, DeLancey JOL, Ashton-Miller JA. Levator ani muscle stretch induced by simulated vaginal birth. Obstet. Gynecol. 2004;103:31–40. doi: 10.1097/01.AOG.0000109207.22354.65. PubMed DOI PMC

Callewaert G, et al. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat. Rev. Urol. 2017;14:373–385. doi: 10.1038/nrurol.2017.42. PubMed DOI

Bortolini MAT, Drutz HP, Lovatsis D, Alarab M. Vaginal delivery and pelvic floor dysfunction: Current evidence and implications for future research. Int. Urogynecol. J. 2010;21:1025–1030. doi: 10.1007/s00192-010-1146-9. PubMed DOI

Peters KM, et al. Autologous muscle derived cells for treatment of stress urinary incontinence in women. J. Urol. 2014;192:469–76. doi: 10.1016/j.juro.2014.02.047. PubMed DOI

Shirvan M, Rohan P, Soltani S. A Novel Cell Therapy for Stress Urinary Incontinence, Midterm outcome. Neurourol Urodyn. 2017;36:1214–1216. doi: 10.1002/nau.23068. PubMed DOI

Carr LK, et al. Autologous muscle derived cell therapy for stress urinary incontinence: A prospective, dose ranging study. J. Urol. 2013;189:595–601. doi: 10.1016/j.juro.2012.09.028. PubMed DOI

Dissaranan C, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23:1395–1406. doi: 10.3727/096368913X670921. PubMed DOI PMC

Deng K, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am. J. Physiol. Renal Physiol. 2015;308:F92–F100. doi: 10.1152/ajprenal.00510.2014. PubMed DOI PMC

Dai M, Xu P, Hou M, Teng Y, Wu Q. In vivo imaging of adipose-derived mesenchymal stem cells in female nude mice after simulated childbirth injury. Exp. Ther. Med. 2015;9:372–376. doi: 10.3892/etm.2014.2092. PubMed DOI PMC

Kean, T. J., Lin, P., Caplan, A. I. & Dennis, J. E. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. 2013 (2013). PubMed PMC

Walczak P, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39:1569–1574. doi: 10.1161/STROKEAHA.107.502047. PubMed DOI PMC

Toupet K, et al. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. PLoS One. 2015;10:1–13. doi: 10.1371/journal.pone.0114962. PubMed DOI PMC

Cruz M, et al. Pelvic Organ Distribution of Mesenchymal Stem Cells Injected Intravenously after Simulated Childbirth Injury in Female Rats. Obstet. Gynecol. Int. 2011;2012:1–7. doi: 10.1155/2012/612946. PubMed DOI PMC

Sadeghi Z, et al. Mesenchymal stem cell therapy in a rat model of birth-trauma injury: functional improvements and biodistribution. Int. Urogynecol. J. 2016;27:291–300. doi: 10.1007/s00192-015-2831-5. PubMed DOI PMC

Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 2004;86–A:1541–58. doi: 10.2106/00004623-200407000-00029. PubMed DOI

Ma S, et al. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25. doi: 10.1038/cdd.2013.158. PubMed DOI PMC

Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 2016;7:7. doi: 10.1186/s13287-015-0271-2. PubMed DOI PMC

Cai J, et al. Maximum efficacy of mesenchymal stem cells in rat model of renal ischemia-reperfusion injury: Renal artery administration with optimal numbers. PLoS One. 2014;9:1–8. PubMed PMC

Sampaolesi M. Cell Therapy of -Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts. Science (80-.). 2003;301:487–492. doi: 10.1126/science.1082254. PubMed DOI

Lin P, et al. Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Mol. Ther. 2014;22:160–168. doi: 10.1038/mt.2013.221. PubMed DOI PMC

Sampaolesi M, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006;444:574–579. doi: 10.1038/nature05282. PubMed DOI

Minasi MG, et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development. 2002;129:2773–2783. PubMed

Holvoet B, et al. Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports. 2015;5:1183–1195. doi: 10.1016/j.stemcr.2015.10.018. PubMed DOI PMC

Trela JM, et al. Scintigraphic comparison of intra-arterial injection and distal intravenous regional limb perfusion for administration of mesenchymal stem cells to the equine foot. Equine Vet. J. 2014;46:479–483. doi: 10.1111/evj.12137. PubMed DOI

Skuk D, Tremblay JP. First study of intra-arterial delivery of myogenic mononuclear cells to skeletal muscles in primates. Cell Transplant. 2014;23(Suppl 1):S141–50. doi: 10.3727/096368914X685032. PubMed DOI

Fong E, Chan C, Goodman S. Stem cell homing in musculoskeletal injury. Biomaterials. 2011;32:395–409. doi: 10.1016/j.biomaterials.2010.08.101. PubMed DOI PMC

Hocking AM. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wound. Adv. Wound Care. 2015;4:623–630. doi: 10.1089/wound.2014.0579. PubMed DOI PMC

Shinohara K, et al. Stromal cell-derived factor-1 and monocyte chemotactic protein-3 improve recruitment of osteogenic cells into sites of musculoskeletal repair. J. Orthop. Res. 2011;29:1064–1069. doi: 10.1002/jor.21374. PubMed DOI

Wood, H. M. et al. Cytokine Expression After Vaginal Distension of. 180, 753–759 (2009). PubMed PMC

Vricella, G. J. et al. Expression of monocyte chemotactic protein 3 following simulated birth trauma in a murine model of obesity. Urology76, (2010). PubMed PMC

Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: Strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine. 2014;9:2539–2555. PubMed PMC

Jizong Gao J, Dennis E, Muzic RF, Lundberg M, Caplan AI. The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs. 2001;7080:12–20. PubMed

Damaser MS, Whitbeck C, Chichester P, Levin RM. Effect of vaginal distension on blood flow and hypoxia of urogenital organs of the female rat. J. Appl. Physiol. 2005;98:1884–1890. doi: 10.1152/japplphysiol.01071.2004. PubMed DOI

Sole A, et al. Scintigraphic evaluation of intra-arterial and intravenous regional limb perfusion of allogeneic bone marrow-derived mesenchymal stem cells in the normal equine distal limb using 99mTc-HMPAO. Equine Vet. J. 2012;44:594–599. doi: 10.1111/j.2042-3306.2011.00530.x. PubMed DOI

Liao L, et al. Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics. 2017;7:106–116. doi: 10.7150/thno.16911. PubMed DOI PMC

Guttinger M, Tafi E, Battaglia M, Coletta M, Cossu G. Allogeneic mesoangioblasts give rise to alpha-sarcoglycan expressing fibers when transplanted into dystrophic mice. Exp. Cell Res. 2006;312:3872–3879. doi: 10.1016/j.yexcr.2006.08.012. PubMed DOI

Noviello M, et al. Inflammation Converts Human Mesoangioblasts Into Targets of Alloreactive Immune Responses: Implications for Allogeneic Cell Therapy of DMD. Mol. Ther. 2014;22:1342–1352. doi: 10.1038/mt.2014.62. PubMed DOI PMC

Huber BC, et al. Costimulation-adhesion blockade is superior to cyclosporine a and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation. Stem Cells. 2013;31:2354–2363. doi: 10.1002/stem.1501. PubMed DOI PMC

Quattrocelli, M. et al. Mouse and human mesoangioblasts: isolation and characterization from adult skeletal muscles. No Title. in Methods in Molecular Biology 65–76 (2012). PubMed

Jiang H-H, et al. NIH Public Access. Neurol. Urodynamics. 2009;28:229–235. doi: 10.1002/nau.20632. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...