Clustering and separation of hydrophobic nanoparticles in lipid bilayer explained by membrane mechanics

. 2018 Jul 17 ; 8 (1) : 10810. [epub] 20180717

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30018296

Grantová podpora
15-33629A Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
16-14758S Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) - International
15-33629A Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) - International

Odkazy

PubMed 30018296
PubMed Central PMC6050295
DOI 10.1038/s41598-018-28965-y
PII: 10.1038/s41598-018-28965-y
Knihovny.cz E-zdroje

Small hydrophobic gold nanoparticles with diameter lower than the membrane thickness can form clusters or uniformly distribute within the hydrophobic core of the bilayer. The coexistence of two stable phases (clustered and dispersed) indicates the energy barrier between nanoparticles. We calculated the distance dependence of the membrane-mediated interaction between two adjacent nanoparticles. In our model we consider two deformation modes: the monolayer bending and the hydroxycarbon chain stretching. Existence of an energy barrier between the clustered and the separated state of nanoparticles was predicted. Variation analysis of the membrane mechanical parameters revealed that the energy barrier between two membrane embedded nanoparticles is mainly the consequence of the bending deformation and not change of the thickness of the bilayer in the vicinity of nanoparticles. It is shown, that the forces between the nanoparticles embedded in the biological membrane could be either attractive or repulsive, depending on the mutual distance between them.

Zobrazit více v PubMed

Rossi G, Monticelli L. Gold nanoparticles in model biological membranes: A computational perspective. Biochim. Biophys. Acta - Biomembr. 2016;1858:2380–2389. doi: 10.1016/j.bbamem.2016.04.001. PubMed DOI

Patra HK, et al. On/off-switchable anti-neoplastic nanoarchitecture. Sci. Rep. 2015;5:14571. doi: 10.1038/srep14571. PubMed DOI PMC

Imani R, et al. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem. Photobiol. Sci. 2015;14:583–590. doi: 10.1039/C4PP00272E. PubMed DOI

Imani, R. et al. Multifunctional gadolinium-doped mesoporous TiO2 nanobeads: photoluminescence, enhanced spin relaxation, and reactive oxygen species photogeneration, beneficial for cancer diagnosis and treatment. Small13, 1–11, 10.1002/smll.201700349 (2017). PubMed

Bahrami AH, Lipowsky R, Weikl TR. The role of membrane curvature for the wrapping of nanoparticles. Soft Matter. 2015;12:581–587. doi: 10.1039/C5SM01793A. PubMed DOI

Agudo-Canalejo J, Lipowsky R. Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces. Soft Matter. 2017;13:2155–2173. doi: 10.1039/C6SM02796B. PubMed DOI

Lin, X. & Gu, N. Surface properties of encapsulating hydrophobic nanoparticles regulate the main phase transition temperature of lipid bilayers: A simulation study. Nano Res., 10.1007/s12274-014-0482-3 (2014).

Tian X, Zheng H, Matsudaira PT, Mirsaidov U. Real time observation of gold nanoparticle aggregation dynamics on a 2D membrane. Microsc. Microanal. 2016;22:808–809. doi: 10.1017/S143192761600489X. PubMed DOI

Angelikopoulos P, Sarkisov L, Cournia Z, Gkeka P. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. Nanoscale. 2017;9:1040–1048. doi: 10.1039/C6NR05853A. PubMed DOI

Sub WH, Lee K, Kyu Pak H. Interfacial energy consideration in the organization of a quantum dot-lipid mixed system. J. Phys. Condens. Matter. 2008;20:494211. doi: 10.1088/0953-8984/20/49/494211. DOI

Gongadze E, et al. Ions and water molecules in an electrolyte solution in contact with charged and dipolar surfaces. Electrochim. Acta. 2014;126:42–60. doi: 10.1016/j.electacta.2013.07.147. DOI

Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials. 2008;29:4244–4252. doi: 10.1016/j.biomaterials.2008.07.020. PubMed DOI PMC

Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 2004;15:897–900. doi: 10.1021/bc049951i. PubMed DOI

Santhosh PB, et al. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity. Chem. Phys. Lipids. 2014;178:52–62. doi: 10.1016/j.chemphyslip.2013.11.009. PubMed DOI

Urban AS, Pfeiffer T, Fedoruk M, Lutich AA, Feldmann J. Single Step Injection of Gold Nanoparticles through Phospholipid Membranes. ACS Nano. 2011;5:3585–3590. doi: 10.1021/nn201132a. PubMed DOI PMC

Mhashal AR, Roy S. Effect of gold nanoparticle on structure and fluidity of lipid membrane. PLoS One. 2014;9:1–18. doi: 10.1371/journal.pone.0114152. PubMed DOI PMC

Šarić A, Cacciuto A. Self-assembly of nanoparticles adsorbed on fluid and elastic membranes. Soft Matter. 2013;9:6677. doi: 10.1039/c3sm50188d. DOI

Yi X, Gao H. Incorporation of soft particles into lipid vesicles: efffects of particle size and elasticity. Langmuir. 2016;32:13252–13260. doi: 10.1021/acs.langmuir.6b03184. PubMed DOI

Velikonja A, et al. Interaction between dipolar lipid headgroups and charged nanoparticles mediated by water dipoles and ions. Int. J. Mol. Sci. 2013;14:15312–15329. doi: 10.3390/ijms140815312. PubMed DOI PMC

Lipowsky R, Döbereiner HG. Vesicles in contact with nanoparticles and colloids. Europhys. Lett. 1998;43:219–225. doi: 10.1209/epl/i1998-00343-4. DOI

Danov KD, Kralchevsky PA. Capillary forces between particles at a liquid interface: General theoretical approach and interactions between capillary multipoles. Adv. Colloid Interface Sci. 2010;154:91–103. doi: 10.1016/j.cis.2010.01.010. PubMed DOI

Müller, M. M., Deserno, M. & Guven, J. Interface-mediated interactions between particles: A geometrical approach. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 10.1103/PhysRevE.72.061407 (2005). PubMed

Goulian M. Inclusions in membranes. Curr. Opin. Colloid Interface Sci. 1996;1:358–361. doi: 10.1016/S1359-0294(96)80133-6. DOI

Bohinc K, Kralj-Iglič V, May S. Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J. Chem. Phys. 2003;119:7435–7444. doi: 10.1063/1.1607305. DOI

Gkeka, P., Angelikopoulos, P., Sarkisov, L. & Cournia, Z. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. PLoS Comput. Biol. 10, 10.1371/journal.pcbi.1003917 (2014). PubMed PMC

Gil T, et al. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998;1376:245–66. doi: 10.1016/S0304-4157(98)00022-7. PubMed DOI

Simunovic M, Voth GA. Membrane tension controls the assembly of curvature-generating proteins. Nat. Commun. 2015;6:7219. doi: 10.1038/ncomms8219. PubMed DOI PMC

Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459:379–385. doi: 10.1038/nature08147. PubMed DOI PMC

Bitbol, A. F., Dommersnes, P. G. & Fournier, J. B. Fluctuations of the Casimir-like force between two membrane inclusions. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 81, 10.1103/PhysRevE.81.050903 (2010). PubMed

Mao Y, Cates ME, Lekkerkerker HNW. Depletion force in colloidal systems. Phys. A Stat. Mech. its Appl. 1995;222:10–24. doi: 10.1016/0378-4371(95)00206-5. DOI

Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2004;69:1–14. doi: 10.1103/PhysRevE.69.031903. PubMed DOI

Contini C, Schneemilch M, Gaisford S, Quirke N. Nanoparticle–membrane interactions. J. Exp. Nanosci. 2018;13:62–81. doi: 10.1080/17458080.2017.1413253. DOI

Guo Y, Terazzi E, Seemann R, Fleury JB, Baulin VA. Direct proof of spontaneous translocation of lipid-covered Hydrophobic nanoparticles through a phospholipid bilayer. Sci. Adv. 2016;2:38–40. PubMed PMC

Rasch MR, et al. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett. 2010;10:3733–9. doi: 10.1021/nl102387n. PubMed DOI

Nielsen C, Andersen OS. Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys. J. 2000;79:2583–604. doi: 10.1016/S0006-3495(00)76498-8. PubMed DOI PMC

May S, Kozlovsky Y, Ben-Shaul A, Kozlov MM. Tilt modulus of a lipid monolayer. Eur. Phys. J. E. 2004;14:299–308. doi: 10.1140/epje/i2004-10019-y. PubMed DOI

Bonnaud C, et al. Insertion of nanoparticle clusters into vesicle bilayers. ACS Nano. 2014;8:3451–3460. doi: 10.1021/nn406349z. PubMed DOI

Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys. J. 1999;76:937–945. doi: 10.1016/S0006-3495(99)77257-7. PubMed DOI PMC

Fošnarič M, et al. The influence of anisotropic membrane inclusions on curvature elastic properties of lipid membranes. J. Chem. Inf. Model. 2005;45:1652–1661. doi: 10.1021/ci050171t. PubMed DOI

Fošnarič M, Iglič A, May S, Fosnaric M, Iglič A. Influence of rigid inclusions on the bending elasticity of a lipid membrane. Phys. Rev. E. 2006;74:1–12. PubMed

Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D. Pre-transition effects mediate forces of assembly between transmembrane proteins. Elife. 2016;5:1–19. doi: 10.7554/eLife.13150. PubMed DOI PMC

Hamai C, Yang T, Kataoka S, Cremer PS, Musser SM. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophys. J. 2006;90:1241–1248. doi: 10.1529/biophysj.105.069435. PubMed DOI PMC

Black JC, Cheney PP, Campbell T, Knowles MK. Membrane curvature based lipid sorting using a nanoparticle patterned substrate. Soft Matter. 2014;10:2016–2023. doi: 10.1039/C3SM52522H. PubMed DOI

Hägerstrand H, et al. Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol. Membr. Biol. 2006;23:277–288. doi: 10.1080/09687860600682536. PubMed DOI

Kralj-Iglič V, Heinrich V, Svetina S, Žekš B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B. 1999;10:5–8. doi: 10.1007/s100510050822. DOI

Kralj-Iglič V, et al. Amphiphile-induced tubular budding of the bilayer membrane. Eur. Biophys. J. 2005;34:1066–1070. doi: 10.1007/s00249-005-0481-0. PubMed DOI

Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung. Tl. C. Biochem. Biophys. Biol. Virol. 1973;11:693–703. PubMed

Perutková Š, et al. Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations. Phys. Chem. Chem. Phys. 2011;13:3100–7. doi: 10.1039/C0CP01187H. PubMed DOI

Wales DJ, Doye JPK. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A. 1997;101:5111–5116. doi: 10.1021/jp970984n. DOI

Fletcher, R. The sequential quadratic programming method. Nonlinear Optim (2010).

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Sci. New Ser. 1983;220:671–680. PubMed

Gopalakrishnan G, et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. Engl. 2006;45:5478–83. doi: 10.1002/anie.200600545. PubMed DOI

Nagle JF, Jablin MS, Tristram-Nagle S, Akabori K. What are the true values of the bending modulus of simple lipid bilayers? Chem. Phys. Lipids. 2015;185:3–10. doi: 10.1016/j.chemphyslip.2014.04.003. PubMed DOI PMC

Tristram-Nagle S, Petrache HI, Nagle JF. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 1998;75:917–925. doi: 10.1016/S0006-3495(98)77580-0. PubMed DOI PMC

Perutkova, S. et al. Stability of the inverted hexagonal phase. In Liu, L. & Tien, H. (eds.) Adv. Planar Lipid Bilayers Liposomes, vol. 9, 237–278 (Academic Press, Burlington), https://doi.org/10.1016/S1554-4516(09)09009-7 (2009).

Kucerka N, Tristram-Nagle S, Nagle JF. Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 2006;208:193–202. doi: 10.1007/s00232-005-7006-8. PubMed DOI

Guo Y, Terazzi E, Seemann R, Fleury JB, Baulin VA. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer. Sci. Adv. 2016;2:e1600261–e1600261. doi: 10.1126/sciadv.1600261. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...