Clustering and separation of hydrophobic nanoparticles in lipid bilayer explained by membrane mechanics
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
15-33629A
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
16-14758S
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) - International
15-33629A
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic) - International
PubMed
30018296
PubMed Central
PMC6050295
DOI
10.1038/s41598-018-28965-y
PII: 10.1038/s41598-018-28965-y
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- hydrofobní a hydrofilní interakce MeSH
- kovové nanočástice chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- shluková analýza MeSH
- termodynamika MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidové dvojvrstvy MeSH
- zlato MeSH
Small hydrophobic gold nanoparticles with diameter lower than the membrane thickness can form clusters or uniformly distribute within the hydrophobic core of the bilayer. The coexistence of two stable phases (clustered and dispersed) indicates the energy barrier between nanoparticles. We calculated the distance dependence of the membrane-mediated interaction between two adjacent nanoparticles. In our model we consider two deformation modes: the monolayer bending and the hydroxycarbon chain stretching. Existence of an energy barrier between the clustered and the separated state of nanoparticles was predicted. Variation analysis of the membrane mechanical parameters revealed that the energy barrier between two membrane embedded nanoparticles is mainly the consequence of the bending deformation and not change of the thickness of the bilayer in the vicinity of nanoparticles. It is shown, that the forces between the nanoparticles embedded in the biological membrane could be either attractive or repulsive, depending on the mutual distance between them.
Dubai Healthcare City Dubai UAE
University Hospital Motol Charles University Prague 150 06 Prague 5 Czech Republic
Zobrazit více v PubMed
Rossi G, Monticelli L. Gold nanoparticles in model biological membranes: A computational perspective. Biochim. Biophys. Acta - Biomembr. 2016;1858:2380–2389. doi: 10.1016/j.bbamem.2016.04.001. PubMed DOI
Patra HK, et al. On/off-switchable anti-neoplastic nanoarchitecture. Sci. Rep. 2015;5:14571. doi: 10.1038/srep14571. PubMed DOI PMC
Imani R, et al. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem. Photobiol. Sci. 2015;14:583–590. doi: 10.1039/C4PP00272E. PubMed DOI
Imani, R. et al. Multifunctional gadolinium-doped mesoporous TiO2 nanobeads: photoluminescence, enhanced spin relaxation, and reactive oxygen species photogeneration, beneficial for cancer diagnosis and treatment. Small13, 1–11, 10.1002/smll.201700349 (2017). PubMed
Bahrami AH, Lipowsky R, Weikl TR. The role of membrane curvature for the wrapping of nanoparticles. Soft Matter. 2015;12:581–587. doi: 10.1039/C5SM01793A. PubMed DOI
Agudo-Canalejo J, Lipowsky R. Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces. Soft Matter. 2017;13:2155–2173. doi: 10.1039/C6SM02796B. PubMed DOI
Lin, X. & Gu, N. Surface properties of encapsulating hydrophobic nanoparticles regulate the main phase transition temperature of lipid bilayers: A simulation study. Nano Res., 10.1007/s12274-014-0482-3 (2014).
Tian X, Zheng H, Matsudaira PT, Mirsaidov U. Real time observation of gold nanoparticle aggregation dynamics on a 2D membrane. Microsc. Microanal. 2016;22:808–809. doi: 10.1017/S143192761600489X. PubMed DOI
Angelikopoulos P, Sarkisov L, Cournia Z, Gkeka P. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. Nanoscale. 2017;9:1040–1048. doi: 10.1039/C6NR05853A. PubMed DOI
Sub WH, Lee K, Kyu Pak H. Interfacial energy consideration in the organization of a quantum dot-lipid mixed system. J. Phys. Condens. Matter. 2008;20:494211. doi: 10.1088/0953-8984/20/49/494211. DOI
Gongadze E, et al. Ions and water molecules in an electrolyte solution in contact with charged and dipolar surfaces. Electrochim. Acta. 2014;126:42–60. doi: 10.1016/j.electacta.2013.07.147. DOI
Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials. 2008;29:4244–4252. doi: 10.1016/j.biomaterials.2008.07.020. PubMed DOI PMC
Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 2004;15:897–900. doi: 10.1021/bc049951i. PubMed DOI
Santhosh PB, et al. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity. Chem. Phys. Lipids. 2014;178:52–62. doi: 10.1016/j.chemphyslip.2013.11.009. PubMed DOI
Urban AS, Pfeiffer T, Fedoruk M, Lutich AA, Feldmann J. Single Step Injection of Gold Nanoparticles through Phospholipid Membranes. ACS Nano. 2011;5:3585–3590. doi: 10.1021/nn201132a. PubMed DOI PMC
Mhashal AR, Roy S. Effect of gold nanoparticle on structure and fluidity of lipid membrane. PLoS One. 2014;9:1–18. doi: 10.1371/journal.pone.0114152. PubMed DOI PMC
Šarić A, Cacciuto A. Self-assembly of nanoparticles adsorbed on fluid and elastic membranes. Soft Matter. 2013;9:6677. doi: 10.1039/c3sm50188d. DOI
Yi X, Gao H. Incorporation of soft particles into lipid vesicles: efffects of particle size and elasticity. Langmuir. 2016;32:13252–13260. doi: 10.1021/acs.langmuir.6b03184. PubMed DOI
Velikonja A, et al. Interaction between dipolar lipid headgroups and charged nanoparticles mediated by water dipoles and ions. Int. J. Mol. Sci. 2013;14:15312–15329. doi: 10.3390/ijms140815312. PubMed DOI PMC
Lipowsky R, Döbereiner HG. Vesicles in contact with nanoparticles and colloids. Europhys. Lett. 1998;43:219–225. doi: 10.1209/epl/i1998-00343-4. DOI
Danov KD, Kralchevsky PA. Capillary forces between particles at a liquid interface: General theoretical approach and interactions between capillary multipoles. Adv. Colloid Interface Sci. 2010;154:91–103. doi: 10.1016/j.cis.2010.01.010. PubMed DOI
Müller, M. M., Deserno, M. & Guven, J. Interface-mediated interactions between particles: A geometrical approach. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 72, 10.1103/PhysRevE.72.061407 (2005). PubMed
Goulian M. Inclusions in membranes. Curr. Opin. Colloid Interface Sci. 1996;1:358–361. doi: 10.1016/S1359-0294(96)80133-6. DOI
Bohinc K, Kralj-Iglič V, May S. Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J. Chem. Phys. 2003;119:7435–7444. doi: 10.1063/1.1607305. DOI
Gkeka, P., Angelikopoulos, P., Sarkisov, L. & Cournia, Z. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. PLoS Comput. Biol. 10, 10.1371/journal.pcbi.1003917 (2014). PubMed PMC
Gil T, et al. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998;1376:245–66. doi: 10.1016/S0304-4157(98)00022-7. PubMed DOI
Simunovic M, Voth GA. Membrane tension controls the assembly of curvature-generating proteins. Nat. Commun. 2015;6:7219. doi: 10.1038/ncomms8219. PubMed DOI PMC
Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459:379–385. doi: 10.1038/nature08147. PubMed DOI PMC
Bitbol, A. F., Dommersnes, P. G. & Fournier, J. B. Fluctuations of the Casimir-like force between two membrane inclusions. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 81, 10.1103/PhysRevE.81.050903 (2010). PubMed
Mao Y, Cates ME, Lekkerkerker HNW. Depletion force in colloidal systems. Phys. A Stat. Mech. its Appl. 1995;222:10–24. doi: 10.1016/0378-4371(95)00206-5. DOI
Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2004;69:1–14. doi: 10.1103/PhysRevE.69.031903. PubMed DOI
Contini C, Schneemilch M, Gaisford S, Quirke N. Nanoparticle–membrane interactions. J. Exp. Nanosci. 2018;13:62–81. doi: 10.1080/17458080.2017.1413253. DOI
Guo Y, Terazzi E, Seemann R, Fleury JB, Baulin VA. Direct proof of spontaneous translocation of lipid-covered Hydrophobic nanoparticles through a phospholipid bilayer. Sci. Adv. 2016;2:38–40. PubMed PMC
Rasch MR, et al. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett. 2010;10:3733–9. doi: 10.1021/nl102387n. PubMed DOI
Nielsen C, Andersen OS. Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys. J. 2000;79:2583–604. doi: 10.1016/S0006-3495(00)76498-8. PubMed DOI PMC
May S, Kozlovsky Y, Ben-Shaul A, Kozlov MM. Tilt modulus of a lipid monolayer. Eur. Phys. J. E. 2004;14:299–308. doi: 10.1140/epje/i2004-10019-y. PubMed DOI
Bonnaud C, et al. Insertion of nanoparticle clusters into vesicle bilayers. ACS Nano. 2014;8:3451–3460. doi: 10.1021/nn406349z. PubMed DOI
Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys. J. 1999;76:937–945. doi: 10.1016/S0006-3495(99)77257-7. PubMed DOI PMC
Fošnarič M, et al. The influence of anisotropic membrane inclusions on curvature elastic properties of lipid membranes. J. Chem. Inf. Model. 2005;45:1652–1661. doi: 10.1021/ci050171t. PubMed DOI
Fošnarič M, Iglič A, May S, Fosnaric M, Iglič A. Influence of rigid inclusions on the bending elasticity of a lipid membrane. Phys. Rev. E. 2006;74:1–12. PubMed
Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D. Pre-transition effects mediate forces of assembly between transmembrane proteins. Elife. 2016;5:1–19. doi: 10.7554/eLife.13150. PubMed DOI PMC
Hamai C, Yang T, Kataoka S, Cremer PS, Musser SM. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophys. J. 2006;90:1241–1248. doi: 10.1529/biophysj.105.069435. PubMed DOI PMC
Black JC, Cheney PP, Campbell T, Knowles MK. Membrane curvature based lipid sorting using a nanoparticle patterned substrate. Soft Matter. 2014;10:2016–2023. doi: 10.1039/C3SM52522H. PubMed DOI
Hägerstrand H, et al. Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol. Membr. Biol. 2006;23:277–288. doi: 10.1080/09687860600682536. PubMed DOI
Kralj-Iglič V, Heinrich V, Svetina S, Žekš B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B. 1999;10:5–8. doi: 10.1007/s100510050822. DOI
Kralj-Iglič V, et al. Amphiphile-induced tubular budding of the bilayer membrane. Eur. Biophys. J. 2005;34:1066–1070. doi: 10.1007/s00249-005-0481-0. PubMed DOI
Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung. Tl. C. Biochem. Biophys. Biol. Virol. 1973;11:693–703. PubMed
Perutková Š, et al. Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations. Phys. Chem. Chem. Phys. 2011;13:3100–7. doi: 10.1039/C0CP01187H. PubMed DOI
Wales DJ, Doye JPK. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A. 1997;101:5111–5116. doi: 10.1021/jp970984n. DOI
Fletcher, R. The sequential quadratic programming method. Nonlinear Optim (2010).
Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Sci. New Ser. 1983;220:671–680. PubMed
Gopalakrishnan G, et al. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. Engl. 2006;45:5478–83. doi: 10.1002/anie.200600545. PubMed DOI
Nagle JF, Jablin MS, Tristram-Nagle S, Akabori K. What are the true values of the bending modulus of simple lipid bilayers? Chem. Phys. Lipids. 2015;185:3–10. doi: 10.1016/j.chemphyslip.2014.04.003. PubMed DOI PMC
Tristram-Nagle S, Petrache HI, Nagle JF. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 1998;75:917–925. doi: 10.1016/S0006-3495(98)77580-0. PubMed DOI PMC
Perutkova, S. et al. Stability of the inverted hexagonal phase. In Liu, L. & Tien, H. (eds.) Adv. Planar Lipid Bilayers Liposomes, vol. 9, 237–278 (Academic Press, Burlington), https://doi.org/10.1016/S1554-4516(09)09009-7 (2009).
Kucerka N, Tristram-Nagle S, Nagle JF. Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 2006;208:193–202. doi: 10.1007/s00232-005-7006-8. PubMed DOI
Guo Y, Terazzi E, Seemann R, Fleury JB, Baulin VA. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer. Sci. Adv. 2016;2:e1600261–e1600261. doi: 10.1126/sciadv.1600261. PubMed DOI PMC