• This record comes from PubMed

Independent effect of atrial fibrillation on natriuretic peptide release

. 2019 Feb ; 108 (2) : 142-149. [epub] 20180726

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
IKEM IN 00023001 Ministry of Health of the Czech Republic (CZ)
2018-2018 ESC Research Fellowship

Links

PubMed 30051184
DOI 10.1007/s00392-018-1332-1
PII: 10.1007/s00392-018-1332-1
Knihovny.cz E-resources

BACKGROUND: We investigated whether the increase of plasma natriuretic peptides (NPs) in atrial fibrillation (AF) is independent of the effect of AF on the left atrial (LA) hemodynamics. METHODS: Hemodynamically stable patients scheduled for AF ablation underwent assessment of B-type natriuretic peptide (BNP) and mid-regional pro-atrial natriuretic peptide (MR-proANP), echocardiography, and direct measurement of left atrial (LA) pressure. Concentrations of the NPs were compared between patients in AF (n = 31) and controls in sinus rhythm (SR; n = 31) who were matched for age, gender, heart rate, left ventricular ejection fraction, LA volume index, and directly measured mean LA pressure. Eighteen patients underwent serial measurement of NPs and LA pressure during native SR and after 20 min of pacing-induced AF. RESULTS: Compared to the patients in SR, the patients in AF had 2.6 times higher unadjusted BNP [median (inter-quartile range), 101 (63, 129) vs. 38 (26, 79) ng/L] and two times higher unadjusted MR-proANP [183 (140, 230) vs. 91 (67, 135) pmol/L; both p < 0.001]. Concentrations of both NPs correlated with mean LA pressure in the patients in SR (r = 0.75 for BNP and 0.62 for MR-proANP, both p < 0.001) but not in the patients in AF (r = 0.18 and 0.04, respectively, both p > 0.3). Both NPs increased significantly during induced AF [adjusted median (IQR) relative change, BNP: 27 (22; 40)%, MR-proANP: 75 (64; 99)%, both p < 0.001] without a significant change in the LA pressure. CONCLUSIONS: The increase of NPs in AF was independent of its effect on the LA hemodynamics.

See more in PubMed

J Am Coll Cardiol. 2000 Apr;35(5):1256-62 PubMed

Am J Cardiol. 2003 Nov 1;92(9):1124-7 PubMed

Cardiology. 2004;102(4):188-93 PubMed

Circ J. 2006 Jan;70(1):100-4 PubMed

Int J Cardiol. 2007 May 2;117(3):395-402 PubMed

Prog Biophys Mol Biol. 2008 Sep;98(1):1-9 PubMed

Clin Res Cardiol. 2009 Feb;98(2):101-6 PubMed

Scand J Clin Lab Invest. 2009;69(5):579-84 PubMed

Pacing Clin Electrophysiol. 2009 Jun;32(6):745-52 PubMed

Int J Cardiol. 2010 Oct 29;144(3):436-7 PubMed

Clin Cardiol. 2009 Dec;32(12):E1-5 PubMed

Pacing Clin Electrophysiol. 2010 May;33(5):541-8 PubMed

Cardiovasc Res. 2011 Mar 1;89(4):754-65 PubMed

Physiol Rev. 2011 Jan;91(1):265-325 PubMed

Clin Chem Lab Med. 2013 May;51(5):1125-33 PubMed

Circ Res. 2014 Apr 25;114(9):1483-99 PubMed

Circ Heart Fail. 2015 Mar;8(2):295-303 PubMed

Clin Res Cardiol. 2016 May;105(5):421-31 PubMed

J Am Coll Cardiol. 2016 Jan 26;67(3):330-7 PubMed

Eur Heart J. 2016 Jul 14;37(27):2129-2200 PubMed

J Am Heart Assoc. 2016 Sep 15;5(9): PubMed

Eur J Heart Fail. 2017 Apr;19(4):552-562 PubMed

J Am Coll Cardiol. 2016 Nov 15;68(20):2217-2228 PubMed

JACC Heart Fail. 2017 Feb;5(2):92-98 PubMed

Clin Res Cardiol. 2018 Jan;107(1):1-19 PubMed

Clin Res Cardiol. 2018 Feb;107(2):95-107 PubMed

Clin Res Cardiol. 2018 Apr;107(4):329-337 PubMed

Clin Res Cardiol. 2018 Jun;107(6):487-497 PubMed

Clin Res Cardiol. 2018 Aug;107(8):698-710 PubMed

Circ Res. 1988 Feb;62(2):191-5 PubMed

JACC Clin Electrophysiol. 2017 May;3(5):461-469 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...