Stepwise triple-click functionalization of synthetic peptides
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30091427
PubMed Central
PMC6113709
DOI
10.1039/c8ob01617h
Knihovny.cz E-zdroje
- MeSH
- alkyny chemie MeSH
- azidy chemie MeSH
- click chemie * MeSH
- katalýza MeSH
- měď chemie MeSH
- peptidy chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkyny MeSH
- azidy MeSH
- měď MeSH
- peptidy MeSH
The increasing popularity of peptides as promising molecular scaffolds for biomedical applications and as valuable biochemical probes makes new methods allowing for their modification highly desirable. We describe herein an optimized protocol based on a sequence of CuAAC click reactions and selective deprotection steps, which leads to an efficient multi-functionalization of synthetic peptides. The methodology has been successfully applied to the construction of defined heteroglycopeptides and fluorophore-quencher-containing probes for proteases. The developed chemistry thus represents an important addition to the available toolbox of methods enabling efficient postsynthetic modification of peptides. The commercial availability of numerous azide probes further greatly extends the application potential of the described methodology.
Zobrazit více v PubMed
Behrendt R., White P., Offer J. J. Pept. Sci. 2016;22:4–27. PubMed PMC
Fosgerau K., Hoffmann T. Drug Discovery Today. 2015;20:122–128. PubMed
Kaspar A. A., Reichert J. M. Drug Discovery Today. 2013;18:807–817. PubMed
Lau J. L., Dunn M. K. Bioorg. Med. Chem. 2018;26:2700–2707. PubMed
Rhodes C. A., Pei D. H. Chem. – Eur. J. 2017;23:12690–12703. PubMed PMC
Katz C., Levy-Beladev L., Rotem-Bamberger S., Rito T., Rudiger S. G. D., Friedler A. Chem. Soc. Rev. 2011;40:2131–2145. PubMed
Szymczak L. C., Kuo H. Y., Mrksich M. Anal. Chem. 2018;90:266–282. PubMed PMC
Jonker A. M., Löwik D. W. P. M., van Hest J. C. M. Chem. Mater. 2012;24:759–773.
Sawada T. and Serizawa T., in Advances in Bioinspired and Biomedical Materials Volume 1, American Chemical Society, 2017, ch. 3, vol. 1252, pp. 31–48.
van Hest J. C. M. Bioconjugate Chem. 2017;28:689–690.
deGruyter J. N., Malins L. R., Baran P. S. Biochemistry. 2017;56:3863–3873. PubMed PMC
Carrico I. S. Chem. Soc. Rev. 2008;37:1423–1431. PubMed
Hackenberger C. P., Schwarzer D. Angew. Chem., Int. Ed. 2008;47:10030–10074. PubMed
Basle E., Joubert N., Pucheault M. Chem. Biol. 2010;17:213–227. PubMed
Spicer C. D., Davis B. G. Nat. Commun. 2014;5:4740. PubMed
Boutureira O., Bernardes G. J. Chem. Rev. 2015;115:2174–2195. PubMed
Meldal M., Tornoe C. W. Chem. Rev. 2008;108:2952–3015. PubMed
Lallana E., Riguera R., Fernandez-Megia E. Angew. Chem., Int. Ed. 2011;50:8794–8804. PubMed
Haldon E., Nicasio M. C., Perez P. J. Org. Biomol. Chem. 2015;13:9528–9550. PubMed
Gramlich P. M., Warncke S., Gierlich J., Carell T. Angew. Chem., Int. Ed. 2008;47:3442–3444. PubMed
Hayashi G., Kamo N., Okamoto A. Chem. Commun. 2017;53:5918–5921. PubMed
Jan P., Benjamin F., Miloš B., Jan H., Mehdi A., Jiri J. Eur. J. Org. Chem. 2018 doi: 10.1002/ejoc.201800601. DOI
Valverde I. E., Delmas A. F., Aucagne V. Tetrahedron. 2009;65:7597–7602.
Meldal M. Curr. Opin. Struct. Biol. 1994;4:710–718.
Hironobu H., Yoshiaki N. Pept. Sci. 2007;88:308–324. PubMed
Worrell B. T., Malik J. A., Fokin V. V. Science. 2013;340:457–460. PubMed PMC
Inglis A. S., Edman P. Anal. Biochem. 1970;37:73–80. PubMed
Neefjes J., Dantuma N. P. Nat. Rev. Drug Discovery. 2004;3:58. PubMed PMC
Sivakumar K., Xie F., Cash B. M., Long S., Barnhill H. N., Wang Q. Org. Lett. 2004;6:4603–4606. PubMed