• This record comes from PubMed

Comparative restriction enzyme mapping of Campylobacter jejuni isolates from turkeys and broilers based on flaA flagellar gene using HpyF3I endonuclease

. 2019 Mar ; 64 (2) : 189-195. [epub] 20180827

Language English Country United States Media print-electronic

Document type Comparative Study, Journal Article

Links

PubMed 30151662
DOI 10.1007/s12223-018-0643-y
PII: 10.1007/s12223-018-0643-y
Knihovny.cz E-resources

Turkeys and broilers have been identified as important reservoirs for Campylobacter jejuni which is of public health significance. The evaluation of the genotypes among C. jejuni strains within different reservoirs is critical for our understanding of the epidemiology of this infectious agent. The present study aimed to compare the genetic diversity and differences of C. jejuni isolates from turkeys and broilers using flagellin PCR-RFLP typing (flaA typing) technique, in terms of the ease of use and discriminatory power. Sixty C. jejuni isolates were detected biochemically and confirmed by duplex-PCR from turkeys and broilers (30 strains from each bird species). Then, a flaA gene fragment (1725 bp) of C. jejuni isolates was amplified and amplicons were digested with HpyF3I enzyme. Restriction analysis by HpyF3I gave four different flaA patterns (H1, H2, H3, H4) among all tested C. jejuni isolates. In broiler isolates, all four patterns were observed but in turkey isolates, only H2 and H4 patterns were present. The results clearly demonstrated that distribution of the flaA typing patterns differed depending on the host species (broiler/turkey). H1 and H3 flaA types are more prevalent in broiler than turkey isolates, while H2 type is significantly more prevalent within isolates from turkey (p < 0.05). The flaA typing technique by digestion with HpyF3I enzyme can almost give us a clue to the source of infection in local outbreaks.

See more in PubMed

Appl Environ Microbiol. 2000 Jan;66(1):1-9 PubMed

J Clin Microbiol. 2001 Jul;39(7):2386-90 PubMed

J Appl Microbiol. 2001 Aug;91(2):217-24 PubMed

Int J Food Microbiol. 2004 Jul 15;94(2):203-9 PubMed

Epidemiol Infect. 2005 Dec;133(6):1081-7 PubMed

J Appl Microbiol. 2006 Feb;100(2):306-15 PubMed

Int J Food Microbiol. 2006 Aug 1;110(3):240-5 PubMed

J Med Microbiol. 2007 Oct;56(Pt 10):1350-5 PubMed

Appl Environ Microbiol. 2008 Dec;74(24):7715-22 PubMed

Vet Microbiol. 2011 Jan 10;147(1-2):90-5 PubMed

J Microbiol Methods. 2011 Feb;84(2):194-201 PubMed

Int J Food Microbiol. 2011 Jan 5;144(3):475-9 PubMed

J S Afr Vet Assoc. 2010 Dec;81(4):228-36 PubMed

Poult Sci. 2012 Jan;91(1):255-64 PubMed

Rev Chilena Infectol. 2011 Dec;28(6):555-62 PubMed

Mol Ecol Resour. 2013 Jan;13(1):66-74 PubMed

Poult Sci. 2013 Feb;92(2):573-80 PubMed

PLoS One. 2013;8(2):e51582 PubMed

Environ Microbiol. 2013 Aug;15(8):2371-83 PubMed

N Z Vet J. 2013 Nov;61(6):337-43 PubMed

Epidemiol Infect. 2014 Jul;142(7):1425-36 PubMed

Prev Vet Med. 2014 May 1;114(2):106-13 PubMed

Int J Food Microbiol. 2014 Jul 2;181:77-84 PubMed

MBio. 2014 Jul 01;5(4):e01364-14 PubMed

Curr Opin Infect Dis. 2014 Oct;27(5):444-50 PubMed

J Food Prot. 2014 Nov;77(11):1851-9 PubMed

Poult Sci. 2015 Mar;94(3):447-53 PubMed

Epidemiol Infect. 2015 Dec;143(16):3498-509 PubMed

Cold Spring Harb Perspect Biol. 2015 Jun 22;7(8):a018119 PubMed

Foodborne Pathog Dis. 2016 Jan;13(1):1-7 PubMed

Clin Microbiol Infect. 2016 Feb;22(2):103-109 PubMed

J Microbiol. 2017 Jan;55(1):13-20 PubMed

Poult Sci. 2017 Jul 1;96(7):2366-2374 PubMed

Curr Microbiol. 2017 Oct;74(10):1160-1168 PubMed

Eur J Clin Microbiol. 1983 Aug;2(4):378-83 PubMed

J Clin Microbiol. 1993 Jun;31(6):1531-6 PubMed

Rev Saude Publica. 1995 Oct;29(5):389-92 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...