Effect of High-Induction Magnetic Stimulation on Elasticity of the Patellar Tendon
Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30154991
PubMed Central
PMC6093077
DOI
10.1155/2018/7172034
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biofyzika MeSH
- dospělí MeSH
- elastografie * MeSH
- lidé středního věku MeSH
- lidé MeSH
- ligamentum patellae diagnostické zobrazování MeSH
- pevnost ve smyku MeSH
- pohyb MeSH
- pružnost MeSH
- rehabilitace metody MeSH
- ultrasonografie * MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nowadays, a high-induction magnetic stimulation is starting to be increasingly applied as a biophysical stimulation in the conservative treatment of the degenerative locomotor system diseases. These are mainly in correlation with the changes in soft tissue elasticity, which should be positively influenced by the flow-induced electrical currents of high current density during high-induction magnetic stimulation. This assumption was verified within the interventional and prospective study using the ultrasound elastography. The group consisted of 6 volunteers, whose elasticity of the patellar tendons was measured using the 2D shear-wave ultrasound elastography. The volunteers were then exposed to a 20-minute high-induction magnetic stimulation session with a frequency of 20 Hz, in 2 s package intervals, with a 5 s pause, and a induced electric current density of 100 Am-2 in the tendons area. A tendon tension was measured five times for all volunteers, where mean tension at the marked area of the tendon, as well as the highest point tension indicated by the Q-Box, was monitored. The measurement results show that high-induction magnetic stimulation has an influence on the patellar tendon tension change, which occurred in the case of all involved volunteers when the patellar tension was decreased.
Zobrazit více v PubMed
Lin V. High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats. Clinical Neurophysiology. 2002;113(7):1006–1012. doi: 10.1016/s1388-2457(02)00122-0. PubMed DOI
Caress J. B., Bastings E. P., Hammond G. L., Walker F. O. A novel method of inducing muscle cramps using repetitive magnetic stimulation. Muscle Nerve. 2000;23(1):126–128. doi: 10.1002/(sici)1097-4598(200001)23:1<126::aid-mus19>3.0.co;2-t. PubMed DOI
Shupak N. M., Prato F. S., Thomas A. W. Therapeutic uses of pulsed magnetic-field exposure: a review. URSI Radio Science Bulletin. 2003;2003(307):9–32.
Silbernagl S. Taschenatlas Physiologie. Stuttgart, Germany: Thieme; 2007.
Markov M. Electromagnetic Fields in Biology and Medicine. Boca Raton, FL, USA: CRC Press; 2015.
Kubis N. Non-invasive brain stimulation to enhance post-stroke recovery. Frontiers in Neural Circuits. 2016;10 doi: 10.3389/fncir.2016.00056. PubMed DOI PMC
Cazzoli D., Muri R. M., Hess C. W., Nyffeler T. Treatment of hemispatial neglect by means of rTMS–a review. Restorative Neurology and Neuroscience. 2010;28(4):499–510. PubMed
Padberg F. Repetitive transcranial magnetic stimulation (rTMS) in major depression relation between efficacy and stimulation intensity. Neuropsychopharmacology. 2002;27(4):638–645. doi: 10.1016/S0893-133X(02)00338-X. PubMed DOI
Loo C. K., Mitchell P. B. A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders. 2005;88(3):255–267. doi: 10.1016/j.jad.2005.08.001. PubMed DOI
Theodore W. H. Transcranial magnetic stimulation in epilepsy. Epilepsy Currents. 2003;3(6):191–197. doi: 10.1046/j.1535-7597.2003.03607.x. PubMed DOI PMC
Jeon H., Kang S., Park J., Lee H. Effects of pulsed electromagnetic field therapy on delayed-onset muscle soreness in biceps brachii. Physical Therapy in Sport. 2015;16(1):34–39. doi: 10.1016/j.ptsp.2014.02.006. PubMed DOI
Huegel J., Choi D. S., Nuss C. A., et al. Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. Journal of Shoulder and Elbow Surgery. 2017;27(3):553–560. doi: 10.1016/j.jse.2017.09.024. PubMed DOI PMC
Viganò M., Sansone V., d’Agostino M. C., Romeo P., Orfei C. P., de Girolamo L. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. Journal of Orthopaedic Surgery and Research. 2016;11(1) doi: 10.1186/s13018-016-0496-5. PubMed DOI PMC
Zhou J., Liao Y., Xie H., et al. Effects of combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats. Bioelectromagnetics. 2016;38(1):31–40. doi: 10.1002/bem.22012. PubMed DOI
Kwan R. L.-C., Wong W.-C., Yip S.-L., Chan K.-L., Zheng Y.-P., Cheing G. L.-Y. Pulsed electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers. Advances in Skin and Wound Care. 2015;28(5):212–219. doi: 10.1097/01.asw.0000462012.58911.53. PubMed DOI
Tucker J. J., Cirone J. M., Morris T. R., et al. Pulsed electromagnetic field therapy improves tendon-to-bone healing in a rat rotator cuff repair model. Journal of Orthopaedic Research. 2016;35(4):902–909. doi: 10.1002/jor.23333. PubMed DOI PMC
Choi M., Cheung K., Li X., Cheing G. L. Pulsed electromagnetic field (PEMF) promotes collagen fibre deposition associated with increased myofibroblast population in the early healing phase of diabetic wound. Archives of Dermatological Research. 2015;308(1):21–29. doi: 10.1007/s00403-015-1604-9. PubMed DOI
Aragona S. E., Mereghetti G., Lotti J., Vosa A., Lotti T., Canavesi E. Electromagnetic field in control tissue regeneration, pelvic pain, neuro-inflammation and modulation of non-neuronal cells. Journal of Biological Regulators and Homeostatic Agents. 2017;31(2):219–225. PubMed
Mense S., Gerwin R. D. Muscle Pain: Diagnosis and Treatment. Berlin, Heidelberg, Germany: Springer; 2010.
World Medical Association. World Medical Association Declaration of Helsinki. Journal of the American Medical Association. 2013;310(20):p. 2191. doi: 10.1001/jama.2013.281053. PubMed DOI
Sigrist R. M. S., Liau J., El Kaffas A., Chammas M. C., Willmann J. K. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–1329. doi: 10.7150/thno.18650. PubMed DOI PMC
Berko N. S., Mehta A. K., Levin T. L., Schulz J. F. Effect of knee position on the ultrasound elastography appearance of the patellar tendon. Clinical Radiology. 2015;70(10):1083–1086. doi: 10.1016/j.crad.2015.06.100. PubMed DOI
SuperSonic Imagine S.A. Aixplorer MultiWave: User’s Guide. France: SuperSonic Imagine; 2016.
Kot B. C. W., Zhang Z. J., Lee A. W. C., Leung V. Y. F., Fu S. N. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One. 2012;7(8) doi: 10.1371/journal.pone.0044348.e44348 PubMed DOI PMC
Whitley E., Ball J. Statistics review 6: nonparametric methods. Critical Care. 2002;6(6):509–513. doi: 10.1186/cc1820. PubMed DOI PMC
Ozcan A. N. S., Tan S., Tangal N. G., et al. Real-time sonoelastography of the patellar and quadriceps tendons: pattern description in professional athletes and healthy volunteers. Medical Ultrasonography. 2016;18(3):p. 299. doi: 10.11152/mu.2013.2066.183.ays. PubMed DOI
Hsiao M.-Y., Chen Y.-C., Lin C.-Y., Chen W.-S., Wang T.-G. Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound in Medicine and Biology. 2015;41(11):2899–2905. doi: 10.1016/j.ultrasmedbio.2015.07.008. PubMed DOI
Hardy A., Rodaix C., Vergari C., Vialle R. Normal range of patellar tendon elasticity using the shearwave elastography technique: an in vivo study in normal volunteers. Surgical Technology International. 2017;31:227–230. PubMed
Yamaguchi G. Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions. Boston, MA, USA: Springer; 2001.
Dirrichs T., Quack V., Gatz M., Tingart M., Kuhl C. K., Schrading S. Shear wave elastography (SWE) for the evaluation of patients with tendinopathies. Academic Radiology. 2016;23(10):1204–1213. doi: 10.1016/j.acra.2016.05.012. PubMed DOI
Zhang L., Wan W., Wang Y., et al. Evaluation of elastic stiffness in healing achilles tendon after surgical repair of a tendon rupture using in vivo ultrasound shear wave elastography. Medical Science Monitor. 2016;22:1186–1191. doi: 10.12659/msm.895674. PubMed DOI PMC
Leong H. T., Hug F., Fu S. N. Increased upper trapezius muscle stiffness in overhead athletes with rotator cuff tendinopathy. PLoS One. 2016;11(5) doi: 10.1371/journal.pone.0155187.e0155187 PubMed DOI PMC
Wu C.-H., Chen W.-S., Wang T.-G. Elasticity of the coracohumeral ligament in patients with adhesive capsulitis of the shoulder. Radiology. 2016;278(2):458–464. doi: 10.1148/radiol.2015150888. PubMed DOI
Prucha J., Krusek J., Dittert I., Sinica V., Kadkova A., Vlachova V. Acute exposure to high-induction electromagnetic field affects activity of model peripheral sensory neurons. Journal of Cellular and Molecular Medicine. 2017;22(2):1355–1362. doi: 10.1111/jcmm.13423. PubMed DOI PMC