Implementation of an efficient linear-optical quantum router

. 2018 Sep 07 ; 8 (1) : 13480. [epub] 20180907

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30194419

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_019/0000754 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
DEC-2015/19/B/ST2/01999 Narodowe Centrum Nauki (National Science Centre)
17-10003S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 30194419
PubMed Central PMC6128919
DOI 10.1038/s41598-018-31273-0
PII: 10.1038/s41598-018-31273-0
Knihovny.cz E-zdroje

For several decades, scientists have been aware of significant benefits allowing quantum information processing technologies to surpass their classical counterparts. Recent technological development allows these benefits to be tested experimentally and in some cases also implemented in practical devices. So far the majority of experimental quantum networks was limited to peer-to-peer communications between two parties. Practical implementation of quantum communications networks, however, needs to address the problem of scalability to serve large numbers of users. Similarly to classical computer networks, their quantum counterparts would require routing protocols to direct the signal from its source to destination. Devices implementing these routing protocols are called quantum routers and have recently been subject of an intense research. In this paper, we report on experimental implementation of a linear-optical quantum router. Our device allows single-photon polarization-encoded qubits to be routed coherently into two spatial output modes depending on the state of two identical control qubits. The polarization qubit state of the routed photon is maintained during the routing operation. The success probability of our scheme can be increased up to 25% making it the most efficient linear-optical quantum router developed to this date.

Erratum v

PubMed

Zobrazit více v PubMed

Lemr K, Černoch A. Linear-optical programmable quantum router. Opt. Comm. 2013;300:282–285. doi: 10.1016/j.optcom.2013.02.052. DOI

Vitelli C, et al. Joining the quantum state of two photons into one. Nat. Photon. 2013;7:521–526. doi: 10.1038/nphoton.2013.107. DOI

Hall MA, Altepeter JB, Kumar P. Ultrafast Switching of Photonic Entanglement. Phys. Rev. Lett. 2011;106:053901. doi: 10.1103/PhysRevLett.106.053901. PubMed DOI

Yuan X-X, et al. Experimental demonstration of a quantum router. Sci. Rep. 2015;5:12452. doi: 10.1038/srep12452. PubMed DOI PMC

Chen Y, Lin Q. Optical quantum router with cross-phase modulation. Sci. China Inform. Sci. 2014;57:1–11. doi: 10.1007/s11432-014-5217-2. DOI

Aoki T, et al. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 2009;102:083601. doi: 10.1103/PhysRevLett.102.083601. PubMed DOI

Hoi I-C, et al. Demonstration of a Single-Photon Router in the Microwave Regime. Phys. Rev. Lett. 2011;107:073601. doi: 10.1103/PhysRevLett.107.073601. PubMed DOI

Zhou L, Yang L-P, Li Y, Sun CP. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 2013;111:103604. doi: 10.1103/PhysRevLett.111.103604. PubMed DOI

Zueco D, Galve F, Kohler S, Hänggi P. Quantum router based on ac control of qubit chains. Phys. Rev. A. 2009;80:042303. doi: 10.1103/PhysRevA.80.042303. DOI

Lemr K, Bartkiewicz K, Černoch A, Soubusta J. Resource-efficient linear-optical quantum router. Phys. Rev. A. 2013;87:062333. doi: 10.1103/PhysRevA.87.062333. DOI

Lu J, Zhou L, Kuang L-M, Nori F. Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A. 2014;89:013805. doi: 10.1103/PhysRevA.89.013805. DOI

Zhan X, Qin H, Bian Z-h, Li J, Xue P. Perfect state transfer and efficient quantum routing: A discrete-time quantum-walk approach. Phys. Rev. A. 2014;90:012331. doi: 10.1103/PhysRevA.90.012331. DOI

Bartkiewicz K, Černoch A, Lemr K. Using quantum routers to implement quantum message authentication and Bell-state manipulation. Phys. Rev. A. 2014;90:022335. doi: 10.1103/PhysRevA.90.022335. DOI

Yan W-B, Fan H. Single-photon quantum router with multiple output ports. Sci. Rep. 2014;4:4820. doi: 10.1038/srep04820. PubMed DOI PMC

Sazim S, Chiranjeevi V, Chakrabarty I, Srinathan K. Retrieving and routing quantum information in a quantum network. Quantum Information Processing. 2015;14:4651. doi: 10.1007/s11128-015-1109-7. DOI

Chen Y, Jiang D, Xie L, Chen L. Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum. Sci. Rep. 2016;6:27033. doi: 10.1038/srep27033. PubMed DOI PMC

Li X, Zhang W-Z, Xiong B, Zhou L. Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci Rep. 2016;6:39343. doi: 10.1038/srep39343. PubMed DOI PMC

Cao C, et al. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express. 2017;25:16931. doi: 10.1364/OE.25.016931. PubMed DOI

Gu X, Kockum AF, Miranowicz A, Liu Y-x, Nori F. Microwave photonics with superconducting quantum circuits. Phy. Rep.–Rev. Sec. Phys. Lett. 2017;718:1. doi: 10.1016/j.physrep.2017.10.002. DOI

Chang, X.-Y., Wang, Y.-X., Zu, C., Liu, K. & Duan, L.-M. Experimental demonstration of an entanglement-based quantum router, arXiv:quant-ph 1207.7265, https://arxiv.org/abs/1207.7265 (2012).

Mičuda M, Ježek M, Dušek M, Fiurášek J. Experimental realization of a programmable quantum gate. Phys. Rev. A. 2008;78:062311. doi: 10.1103/PhysRevA.78.062311. DOI

Bartkiewicz K, Miranowicz A. Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere. Phys. Rev A. 2010;82:042330. doi: 10.1103/PhysRevA.82.042330. DOI

Bartkiewicz K, Černoch A, Lemr K, Miranowicz A, Nori Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks. Phys. Rev. A. 2016;93:062345. doi: 10.1103/PhysRevA.93.062345. DOI

Miková M, et al. Increasing efficiency of a linear-optical quantum gate using electronic feed-forward. Phys. Rev. A. 2012;85:012305. doi: 10.1103/PhysRevA.85.012305. DOI

Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental characterization of photon-number noise in Rarity-Tapster-Loudon-type interferometers. Phys. Rev. A. 2017;96:023847. doi: 10.1103/PhysRevA.96.023847. DOI

Supplementary information, 10.1038/s41598-018-31273-0.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...