Implementation of an efficient linear-optical quantum router
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
DEC-2015/19/B/ST2/01999
Narodowe Centrum Nauki (National Science Centre)
17-10003S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
30194419
PubMed Central
PMC6128919
DOI
10.1038/s41598-018-31273-0
PII: 10.1038/s41598-018-31273-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
For several decades, scientists have been aware of significant benefits allowing quantum information processing technologies to surpass their classical counterparts. Recent technological development allows these benefits to be tested experimentally and in some cases also implemented in practical devices. So far the majority of experimental quantum networks was limited to peer-to-peer communications between two parties. Practical implementation of quantum communications networks, however, needs to address the problem of scalability to serve large numbers of users. Similarly to classical computer networks, their quantum counterparts would require routing protocols to direct the signal from its source to destination. Devices implementing these routing protocols are called quantum routers and have recently been subject of an intense research. In this paper, we report on experimental implementation of a linear-optical quantum router. Our device allows single-photon polarization-encoded qubits to be routed coherently into two spatial output modes depending on the state of two identical control qubits. The polarization qubit state of the routed photon is maintained during the routing operation. The success probability of our scheme can be increased up to 25% making it the most efficient linear-optical quantum router developed to this date.
Zobrazit více v PubMed
Lemr K, Černoch A. Linear-optical programmable quantum router. Opt. Comm. 2013;300:282–285. doi: 10.1016/j.optcom.2013.02.052. DOI
Vitelli C, et al. Joining the quantum state of two photons into one. Nat. Photon. 2013;7:521–526. doi: 10.1038/nphoton.2013.107. DOI
Hall MA, Altepeter JB, Kumar P. Ultrafast Switching of Photonic Entanglement. Phys. Rev. Lett. 2011;106:053901. doi: 10.1103/PhysRevLett.106.053901. PubMed DOI
Yuan X-X, et al. Experimental demonstration of a quantum router. Sci. Rep. 2015;5:12452. doi: 10.1038/srep12452. PubMed DOI PMC
Chen Y, Lin Q. Optical quantum router with cross-phase modulation. Sci. China Inform. Sci. 2014;57:1–11. doi: 10.1007/s11432-014-5217-2. DOI
Aoki T, et al. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 2009;102:083601. doi: 10.1103/PhysRevLett.102.083601. PubMed DOI
Hoi I-C, et al. Demonstration of a Single-Photon Router in the Microwave Regime. Phys. Rev. Lett. 2011;107:073601. doi: 10.1103/PhysRevLett.107.073601. PubMed DOI
Zhou L, Yang L-P, Li Y, Sun CP. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 2013;111:103604. doi: 10.1103/PhysRevLett.111.103604. PubMed DOI
Zueco D, Galve F, Kohler S, Hänggi P. Quantum router based on ac control of qubit chains. Phys. Rev. A. 2009;80:042303. doi: 10.1103/PhysRevA.80.042303. DOI
Lemr K, Bartkiewicz K, Černoch A, Soubusta J. Resource-efficient linear-optical quantum router. Phys. Rev. A. 2013;87:062333. doi: 10.1103/PhysRevA.87.062333. DOI
Lu J, Zhou L, Kuang L-M, Nori F. Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A. 2014;89:013805. doi: 10.1103/PhysRevA.89.013805. DOI
Zhan X, Qin H, Bian Z-h, Li J, Xue P. Perfect state transfer and efficient quantum routing: A discrete-time quantum-walk approach. Phys. Rev. A. 2014;90:012331. doi: 10.1103/PhysRevA.90.012331. DOI
Bartkiewicz K, Černoch A, Lemr K. Using quantum routers to implement quantum message authentication and Bell-state manipulation. Phys. Rev. A. 2014;90:022335. doi: 10.1103/PhysRevA.90.022335. DOI
Yan W-B, Fan H. Single-photon quantum router with multiple output ports. Sci. Rep. 2014;4:4820. doi: 10.1038/srep04820. PubMed DOI PMC
Sazim S, Chiranjeevi V, Chakrabarty I, Srinathan K. Retrieving and routing quantum information in a quantum network. Quantum Information Processing. 2015;14:4651. doi: 10.1007/s11128-015-1109-7. DOI
Chen Y, Jiang D, Xie L, Chen L. Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum. Sci. Rep. 2016;6:27033. doi: 10.1038/srep27033. PubMed DOI PMC
Li X, Zhang W-Z, Xiong B, Zhou L. Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci Rep. 2016;6:39343. doi: 10.1038/srep39343. PubMed DOI PMC
Cao C, et al. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express. 2017;25:16931. doi: 10.1364/OE.25.016931. PubMed DOI
Gu X, Kockum AF, Miranowicz A, Liu Y-x, Nori F. Microwave photonics with superconducting quantum circuits. Phy. Rep.–Rev. Sec. Phys. Lett. 2017;718:1. doi: 10.1016/j.physrep.2017.10.002. DOI
Chang, X.-Y., Wang, Y.-X., Zu, C., Liu, K. & Duan, L.-M. Experimental demonstration of an entanglement-based quantum router, arXiv:quant-ph 1207.7265, https://arxiv.org/abs/1207.7265 (2012).
Mičuda M, Ježek M, Dušek M, Fiurášek J. Experimental realization of a programmable quantum gate. Phys. Rev. A. 2008;78:062311. doi: 10.1103/PhysRevA.78.062311. DOI
Bartkiewicz K, Miranowicz A. Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere. Phys. Rev A. 2010;82:042330. doi: 10.1103/PhysRevA.82.042330. DOI
Bartkiewicz K, Černoch A, Lemr K, Miranowicz A, Nori Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks. Phys. Rev. A. 2016;93:062345. doi: 10.1103/PhysRevA.93.062345. DOI
Miková M, et al. Increasing efficiency of a linear-optical quantum gate using electronic feed-forward. Phys. Rev. A. 2012;85:012305. doi: 10.1103/PhysRevA.85.012305. DOI
Trávníček V, Bartkiewicz K, Černoch A, Lemr K. Experimental characterization of photon-number noise in Rarity-Tapster-Loudon-type interferometers. Phys. Rev. A. 2017;96:023847. doi: 10.1103/PhysRevA.96.023847. DOI
Supplementary information, 10.1038/s41598-018-31273-0.