Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas

. 2018 Sep 18 ; 8 (1) : 13980. [epub] 20180918

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30228341

Grantová podpora
HE3089/9-1 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
HE3089/9-1 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
KR 726/10-1 Deutsche Forschungsgemeinschaft (German Research Foundation) - International
200021L_157187/1 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) - International
200021L_157187/1 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) - International
200021L_157187/1 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) - International
200021L_157187/1 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) - International

Odkazy

PubMed 30228341
PubMed Central PMC6143623
DOI 10.1038/s41598-018-32251-2
PII: 10.1038/s41598-018-32251-2
Knihovny.cz E-zdroje

Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (δ18O, δ13C) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (δ18Osw) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (δ18Osw), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low δ18Osw) versus Mediterranean (high δ18Osw) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.

Zobrazit více v PubMed

Brauer, A. et al. The importance of independent chronology in integrating records of past climate change for the 60 e 8 ka INTIMATE time interval. Quaternary Science Reviews. 106 (2014).

Dansgaard, W. Ice core evidence of abrupt climatic change. Abrupt Clim. Chang. 223–224 (1987).

Not C, Hillaire-Marcel C. Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat. Commun. 2012;3:647. doi: 10.1038/ncomms1658. PubMed DOI

Ivy-Ochs S, et al. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geol. Soc. Am. Spec. Pap. 2006;415:43–60.

Brauer A, Haug GH, Dulski P, Sigman DM, Negendank JFW. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 2008;1:520–523. doi: 10.1038/ngeo263. DOI

Steffensen JP, et al. High-Resolution Greenland Ice Core Data Show AbruptClimate Change Happens in Few Years. Science (80-.). 2008;321:680–683. doi: 10.1126/science.1157707. PubMed DOI

Alley RB. Wally Was Right: Predictive Ability of the North Atlantic ‘Conveyor Belt’ Hypothesis for Abrupt Climate Change. Annu. Rev. Earth Planet. Sci. 2007;35:241–272. doi: 10.1146/annurev.earth.35.081006.131524. DOI

Alley RB, et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature. 1993;362:527–529. doi: 10.1038/362527a0. DOI

Lotter AF, Eicher U, Siegenthaler U, Birks HJB. Late-glacial climate oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 1992;7:187–204. doi: 10.1002/jqs.3390070302. DOI

Lücke A, Brauer A. Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar (Germany) Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004;211:139–155. doi: 10.1016/j.palaeo.2004.05.006. DOI

Peyron O, et al. Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids. Quat. Res. 2005;64:197–211. doi: 10.1016/j.yqres.2005.01.006. DOI

Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas - A synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology159 (2000).

Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).

Vecchi G, Delworth T, Booth B. Climate science: Origins of Atlantic decadal swings. Nature. 2017;548:284–285. doi: 10.1038/nature23538. PubMed DOI

Genty D, et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites. Quat. Sci. Rev. 2006;25:2118–2142. doi: 10.1016/j.quascirev.2006.01.030. DOI

Heiri O, et al. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat. Commun. 2014;5:4914. doi: 10.1038/ncomms5914. PubMed DOI PMC

Prentice C, Guiot J, Harrison S. Mediterrannean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature. 1992;357:57–59. doi: 10.1038/357057a0. DOI

Miramont C, et al. Radiocarbon time scale calibration using tree rings. Contribution of french subfossil tree-ring chronologies at Barbiers River (Southern French Alps) Quaternaire. 2011;22:261–271.

Celle-Jeanton H, Travi Y, Blavoux B. Isotopic typology of the precipitation in the Western Mediterrenean region at the three different time scales. Geophys. Res. Lett. 2001;28:1215–1218. doi: 10.1029/2000GL012407. DOI

Kaiser KF, et al. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute - an inventory. Quat. Sci. Rev. 2012;36:78–90. doi: 10.1016/j.quascirev.2010.07.009. DOI

Capano, M. et al. Wood 14C dating with AixMICADAS: methods and application to tree-ring sequences from the Younger Dryas event in the southern French Alps. Radiocarbon (2017).

Reinig F, et al. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quat. Sci. Rev. 2018;186:215–224. doi: 10.1016/j.quascirev.2018.02.019. DOI

Helama S, Arppe L, Timonen M, Mielikäinen K, Oinonen M. Age-related trends in subfossil tree-ring δ13C data. Chem. Geol. 2015;416:28–35. doi: 10.1016/j.chemgeo.2015.10.019. DOI

Brienen RJW, et al. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat. Commun. 2017;8:288. doi: 10.1038/s41467-017-00225-z. PubMed DOI PMC

Hogg A, et al. Decadally Resolved Lateglacial Radiocarbon Evidence from New Zealand Kauri. Radiocarbon. 2016;58:709–733. doi: 10.1017/RDC.2016.86. DOI

Barnard HR, Brooks JR, Bond BJ. Applying the dual-isotope conceptual model to interpret physiological trends under uncontrolled conditions. Tree Physiol. 2012;32:1183–1198. doi: 10.1093/treephys/tps078. PubMed DOI

Scheidegger Y, Saurer M, Bahn M, Siegwolf R. Linking Stable Oxygen and Carbon Isotopes with Stomatal Conductance and Photosynthetic Capacity: A Conceptual Model. Oecologia. 2000;125:350–357. doi: 10.1007/s004420000466. PubMed DOI

Björck S, et al. An event stratigraphy for the last termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. J. Quat. Sci. 1998;13:283–292. doi: 10.1002/(SICI)1099-1417(199807/08)13:4<283::AID-JQS386>3.0.CO;2-A. DOI

Lauterbach S, et al. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps) J. Quat. Sci. 2011;26:253–267. doi: 10.1002/jqs.1448. DOI

Rach O, Brauer A, Wilkes H, Sachse D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 2014;7:109–112. doi: 10.1038/ngeo2053. DOI

Engels S, Van Geel B, Buddelmeijer N, Brauer A. High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records. Rev. Palaeobot. Palynol. 2015;221:160–170. doi: 10.1016/j.revpalbo.2015.06.010. DOI

Engels S, et al. Subdecadal-scale vegetation responses to a previously unknown late-Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany) J. Quat. Sci. 2016;31:741–752. doi: 10.1002/jqs.2900. DOI

Cacho I, et al. Variability in the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleooceanography. 2001;16:40–52. doi: 10.1029/2000PA000502. DOI

Broecker WS. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science. 2003;300:1519–22. doi: 10.1126/science.1083797. PubMed DOI

Miramont C, Sivan O, Rosique T, Edouard B, Jorda M. Subfossil tree deposits in the Middle Durance (southern Alps, France): Environmental changes from Allerod to Atlantic. Radiocarbon. 2000;47:115–134.

Hua Q, Barbetti M, Rakowski A. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon. 2013;55:2059–2072. doi: 10.2458/azu_js_rc.v55i2.16177. DOI

Brauer A, Endres C, Negendank JFW. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quat. Int. 1999;61:17–25. doi: 10.1016/S1040-6182(99)00014-2. DOI

Lane C, et al. Was the 12.1ka Icelandic Vedde Ash one of a kind? J. Quat. Sci. 2012;27:141–149. doi: 10.1002/jqs.1521. DOI

Zolitschka B, Negendank JFW, Lottermoser BG. Sedimentological proof and dating of the early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany) Geol. Rundschau. 1995;84:213–219. doi: 10.1007/BF00192252. DOI

Mortensen A, Bigler M, Grönvold K, Steffensen JP, Johnsen SJ. Volcanic ash layers from the Last Glacial Termination in the NGRIP ice core. J. Quat. Sci. 2005;20:209–219. doi: 10.1002/jqs.908. DOI

Lane C, et al. The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 2015;122:192–206. doi: 10.1016/j.quascirev.2015.05.025. DOI

Wieloch T, Helle G, Heinrich I, Voigt M, Schyma P. A novel device for batch-wise isolation of??-cellulose from small-amount wholewood samples. Dendrochronologia. 2011;29:115–117. doi: 10.1016/j.dendro.2010.08.008. DOI

Schollaen K, et al. A guideline for sample preparation in modern tree-ring stable isotope research. Dendrochronologia. 2017;44:133–145. doi: 10.1016/j.dendro.2017.05.002. DOI

Debajyoti P, Skrzypek G, Forizs I. Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun. Mass Spectrom. 2007;21:3006–2014. doi: 10.1002/rcm.3185. PubMed DOI

Anderson WT, Bernasconi SM, McKenzie JA, Saurer M, Schweingruber F. Model evaluation for reconstructing the oxygen isotopic composition in precipitation from tree ring cellulose over the last century RID E-5394-2010. Chem. Geol. 2002;182:121–137. doi: 10.1016/S0009-2541(01)00285-6. DOI

Edwards TWD, et al. d13C response surface resolves humidity and temperature. Geochim. Cosmochim. Acta. 2000;64:161–167. doi: 10.1016/S0016-7037(99)00289-6. DOI

Johnsen SJ, et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 2001;16:299–307. doi: 10.1002/jqs.622. DOI

DeNiro MJ, Epstein S. Isotopic composition of cellulose from aquatic organisms. Geochim. Cosmochim. Acta. 1981;45:1885–1894. doi: 10.1016/0016-7037(81)90018-1. DOI

DeNiro MJ, Epstein S. Relationship Between the Oxygen Isotope Ratios of Terrestrial. Science (80-.). 1979;204:51–53. doi: 10.1126/science.204.4388.51. PubMed DOI

Sternberg, L. da S. L. Oxygen and Hydrogen Isotope Ratios in PlantCellulose: Mechanisms and Applications. in Stable Isotopes in Ecological Research 124–141 (1989).

Majoube M. Fractionnement en oxyge’ne 18 et en deute ´rium entre l’eau et sa vapeur. J. Chim. Phys. 1971;68:1423–1436. doi: 10.1051/jcp/1971681423. DOI

Buhay WM, Edwards TWD. Climate in southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in different hydrologic settings. Quaternary Research. 1995;44:438–446. doi: 10.1006/qres.1995.1089. DOI

Killick R, Eckley I. changepoint: An R Package for Changepoint Analysis. J. Stat. Softw. 2014;58:1–19. doi: 10.18637/jss.v058.i03. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recent centennial drought on the Tibetan Plateau is outstanding within the past 3500 years

. 2025 Feb 03 ; 16 (1) : 1311. [epub] 20250203

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...