Golden Orbweavers Ignore Biological Rules: Phylogenomic and Comparative Analyses Unravel a Complex Evolution of Sexual Size Dimorphism
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30517732
PubMed Central
PMC6568015
DOI
10.1093/sysbio/syy082
PII: 5229942
Knihovny.cz E-zdroje
- Klíčová slova
- Body size evolution, Cope’s rule, Nephilidae, Orbipurae, Phonognathidae, Rensch’s rule, female gigantism, web asymmetry,
- MeSH
- fylogeneze * MeSH
- pavouci anatomie a histologie klasifikace genetika MeSH
- pohlavní dimorfismus * MeSH
- velikost těla genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.
Zobrazit více v PubMed
Aberer A.J., Krompass D., Stamatakis A.. 2013. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol. 62:162–166. PubMed PMC
Abouheif E., Fairbairn D.J.. 1997. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. Am. Nat. 149:540–562.
Agnarsson I., Coddington J.A., Kuntner M.. 2013. Systematics: progress in the study of spider diversity and evolution. In: Penney D., editor. Spider research in the 21st century: trends and perspectives. Manchester: Siri Scientific Press; p. 58–111.
Alroy J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science. 280:731–734. PubMed
Babb P.L., Lahens N.F., Correa-Garhwal S.M., Nicholson D.N., Kim E.J., Hogenesch J.B., Kuntner M., Higgins L., Hayashi C.Y., Agnarsson I., Voight B.F.. 2017. The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression. Nat. Genet. 49:895–903. PubMed
Blackledge T.A., Gillespie R.G.. 2002. Estimation of capture areas of spider orb webs in relation to asymmetry. J. Arachnol. 30:70–77.
Blackledge T.A., Kuntner M., Agnarsson I.. 2011. The form and function of spider orb webs: evolution from silk to ecosystems. Adv. Insect Phys. 41:175–262.
Blanckenhorn W.U. 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology. 111:977–1016.
Blanckenhorn W.U., Dixon A.F.G., Fairbairn D.J., Foellmer M.W., Gibert P., van der Linde K., Meier R., Nylin S., Pitnick S., Schoff C., Signorelli M., Teder T., Wiklund C.. 2007a. Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat. 169:245–257. PubMed
Blanckenhorn W.U., Meier R., Teder T.. 2007b. Rensch’s rule in insects: patterns among and within species. In: Fairbairn D.J., Blanckenhorn W.U., Székely T., editors. Sex, size and gender roles. New York: Oxford University Press; p. 60–70.
Bokma F., Godinot M., Maridet O., Ladevèze S., Costeur L., Solé F., Gheerbrant E., Peigné S., Jacques F., Laurin M.. 2016. Testing for Depéret’s rule (body size increase) in mammals using combined extinct and extant data. Syst. Biol. 65:98–108. PubMed PMC
Bond J.E., Garrison N.L., Hamilton C.A., Godwin R.L., Hedin M., Agnarsson I.. 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr. Biol. 24:1765–1771. PubMed
Chamberland L., McHugh A., Kechejian S., Binford G.J., Bond J.E., Coddington J.A., Dolman G., Hamilton C.A., Harvey M.S., Kuntner M., Agnarsson I.. 2018. From Gondwana to GAARlandia: evolutionary history and biogeography of ogre-faced spiders (Deinopis). J. Biogeogr. 45:2442–2457.
Cheng R.-C., Kuntner M.. 2014. Phylogeny suggests non-directional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution. 68:1–31. PubMed
Cheng R.-C., Kuntner M.. 2015. Disentangling the size and shape components of sexual dimorphism. Evol. Biol. 42:223–234.
Coddington J.A., Hormiga G., Scharff N.. 1997. Giant female or dwarf male spiders? Nature. 385:687–688.
Cruickshank R.D., Ko K.. 2003. Geology of an amber locality in the Hukawng Valley, Northern Myanmar. J. Asian Earth Sci. 21:441–455.
Dahl F. 1911. Die Verbreitung der Spinnen spricht gegen eine frühere Landverbindung der Südspitzen unserer Kontinente. Zool. Anz. 37:270–282.
Danielson-François A., Hou C., Cole N., Tso I.M.. 2012. Scramble competition for moulting females as a driving force for extreme male dwarfism in spiders. Anim. Behav. 84:937–945.
Dimitrov D., Benavides L.R., Arnedo M.A., Giribet G., Griswold C.E., Scharff N., Hormiga G.. 2017. Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics. 33:221–250. PubMed
Eberhard W.G. 1990. Function and phylogeny of spider webs. Annu. Rev. Ecol. Syst. 21:341–372.
Elgar M.A. 1991. Sexual cannibalism, size dimorphism, and courtship in orb-weaving spiders (Araneidae). Evolution. 45:444–448. PubMed
Fairbairn D.J. 1997. Allometry for sexual size dimorphism: patterns and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. 28:659–687.
Fairbairn D.J. 2005. Allometry for sexual size dimorphism: testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am. Nat. 166:S69–S84. PubMed
Fairbairn D.J. 2007. Introduction: the enigma of sexual size dimorphism. In: Fairbairn D.J., Blanckenhorn W.U., Székely T., editors. Sex, size and gender roles. New York: Oxford University Press; p. 1–10.
Fernández R., Hormiga G., Giribet G.. 2014. Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Curr. Biol. 24:1772–1777. PubMed
Fernández R., Kallal R.J., Dimitrov D., Ballesteros J.A., Arnedo M.A., Giribet G., Hormiga G.. 2018. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Curr. Biol. 28:1489–1497. PubMed
Foellmer M.W., Moya-Laraño J.. 2007. Sexual size dimorphism in spiders: patterns and processes. In: Fairbairn D.J., Blanckenhorn W.U., Székely T., editors. Sex, size, and gender roles: evolutionary studies of sexual size dimorphism. New York: Oxford University Press; p. 71–82.
Garrison N.L., Rodriguez J., Agnarsson I., Coddington J.A., Griswold C.E., Hamilton C.A., Hedin M., Kocot K.M., Ledford J.M., Bond J.E.. 2016. Spider phylogenomics: untangling the Spider Tree of Life. PeerJ. 4:e1719. PubMed PMC
Godwin R.L., Opatova V., Garrison N.L., Hamilton C.A., Bond J.E.. 2018. Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using anchored hybrid enrichment, with a description of the family, Halonoproctidae Pocock 1901. Mol. Phylogenet. Evol. 126:303–313. PubMed
Gould S.J. 1997. Cope’s rule as psychological artefact. Nature. 385:199–200.
Gregorič M., Agnarsson I., Blackledge T.A., Kuntner M.. 2015. Phylogenetic position and composition of Zygiellinae and Caerostris, with new insight into orb-web evolution and gigantism. Zool. J. Linn. Soc. 175:225–243.
Gregorič M., Agnarsson I., Blackledge T.A., Kuntner M.. 2011. Darwin’s bark spider: giant prey in giant orb webs (aerostris darwini, Araneae: Araneidae)? J. Arachnol. 39:287–295.
Hadfield J.D. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33:1–22. PubMed
Hamilton C.A., Lemmon A.R., Lemmon E.M., Bond J.E.. 2016a. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evol. Biol. 16:212. PubMed PMC
Hamilton C.A., Hendrixson B.E., Bond J.E.. 2016b. Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States. Zookeys. 2016:1–340. PubMed PMC
Harmer A.M.T., Herberstein M.E.. 2009. Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (Araneidae: Telaprocera maudae)? Anim. Behav. 78:499–504.
Harmon L.J., Weir J.T., Brock C.D., Glor R.E., Challenger W.. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics. 24:129–131. PubMed
Head G. 1995. Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (Class Araneae). Evolution. 49:776. PubMed
Heim N.A., Knope M.. 2015. Cope’s rule in the evolution of marine animals. Science. 347:867–870. PubMed
Hennig W. 1965. Phylogenetic systematics. Annu. Rev. Entomol. 10:97–116.
Higgins L. 2002. Female gigantism in a New Guinea population of the spider Nephila maculata. Oikos. 99:377–385.
Higgins L., Coddington J., Goodnight C., Kuntner M.. 2011. Testing ecological and developmental hypotheses of mean and variation in adult size in nephilid orb-weaving spiders. Evol. Ecol. 25:1289–1306.
Hone D., Benton M.. 2005. The evolution of large size: how does Cope’s rule work? Trends Ecol. Evol. 20:4–6. PubMed
Hormiga G., Griswold C.E.. 2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu. Rev. Entomol. 59:487–512. PubMed
Hormiga G., Scharff N., Coddington J.A.. 2000. The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Syst. Biol. 49:435–62. PubMed
Hunt G., Roy K.. 2006. Climate change, body size evolution, and Cope’s rule in deep-sea ostracodes. Proc. Natl. Acad. Sci. USA. 103:1347–52. PubMed PMC
Kallal R.J., Fernández R., Giribet G., Hormiga G.. 2018. A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Mol. Phylogenet. Evol. 126:129–140. PubMed
Kallal R.J., Hormiga G.. 2018. Systematics, phylogeny and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with a comparative analysis of retreat evolution. Zool. J. Lin. Soc. 184:1055–1141.
Katoh K., Standley D.M.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772–780. PubMed PMC
Kingsolver J.G., Pfennig D.W.. 2004. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution. 58:1608–1612. PubMed
Kuntner M. 2005. A revision of Herennia (Araneae: Nephilidae: Nephilinae), the Australasian “coin spiders”. Invertebr. Syst. 19:391–436.
Kuntner M. 2006. Phylogenetic systematics of the Gondwanan nephilid spider lineage Clitaetrinae (Araneae, Nephilidae). Zool. Scr. 35:19–62.
Kuntner M. 2007. A monograph of Nephilengys, the pantropical ‘hermit spiders’ (Araneae, Nephilidae, Nephilinae). Syst. Entomol. 32:95–135.
Kuntner M. 2017. Nephilidae. In: Ubick D., Paquin P., Cushing P.E., Roth V., editors. Spiders of North America: an identification manual. 2nd ed.American Arachnological Society; p. 191–192.
Kuntner M., Agnarsson I.. 2011. Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae: Nephilengys). Mol. Phylogenet. Evol. 59:477–488. PubMed
Kuntner M., Arnedo M.A., Trontelj P., Lokovšek T., Agnarsson I.. 2013. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage. Mol. Phylogenet. Evol. 69:961–979. PubMed
Kuntner M., Cheng R.-C.. 2016. Evolutionary pathways maintaining extreme female-biased sexual size dimorphism: convergent spider cases defy common patterns. In: Pontarotti P., editor. Evolutionary biology: convergent evolution, evolution of complex traits, concepts and methods. Cham: Springer International Publishing. p. 121–133.
Kuntner M., Cheng R.-C., Kralj-Fišer S., Liao C.-P., Schneider J.M., Elgar M.A.. 2016. The evolution of genital complexity and mating rates in sexually size dimorphic spiders. BMC Evol. Biol. 16:242. PubMed PMC
Kuntner M., Coddington J.A.. 2009. Discovery of the largest orbweaving spider species: the evolution of gigantism in Nephila. PLoS One. 4:2–6. PubMed PMC
Kuntner M., Coddington J.A., Hormiga G.. 2008. Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics. 24:147–217.
Kuntner M., Coddington J.A., Schneider J.M.. 2009. Intersexual arms race? Genital coevolution in nephilid spiders (Araneae, Nephilidae). Evolution. 63:1451–1463. PubMed
Kuntner M., Elgar M.A.. 2014. Evolution and maintenance of sexual size dimorphism: Aligning phylogenetic and experimental evidence. Front. Ecol. Evol. 2:1–8.
Kuntner M., Gregorič M., Li D.. 2010. Mass predicts web asymmetry in Nephila spiders. Naturwissenschaften. 97:1097–1105. PubMed
Kuntner M., Zhang S., Gregorič M., Li D.. 2012. Nephila female gigantism attained through post-maturity molting. J. Arachnol. 40:345–347.
Legendre P. 2014. lmodel2: model II regression. R package version 1.7-2. Available at: http://CRAN.R-project.org/package=lmodel2.
Lemmon A.R., Emme S.A., Lemmon E.M.. 2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61:727–744. PubMed
Lupše N., Cheng R.-C., Kuntner M.. 2016. Coevolution of female and male genital components to avoid genital size mismatches in sexually dimorphic spiders. BMC Evol. Biol. 16:161. PubMed PMC
Maddison W.P., Evans S.C., Hamilton C.A., Bond J.E., Lemmon A.R., Lemmon E.M.. 2017. A genome-wide phylogeny of jumping spiders (Araneae, Salticidae), using anchored hybrid enrichment. Zookeys. 2017:89–101. PubMed PMC
Maddison W.P., Maddison D.R.. 2015. Mesquite: a modular system for evolutionary analysis. Version 3.04. Available from: URL http//mesquiteproject.org.
Meyer M., Kircher M.. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010:pdb.prot5448. PubMed
Mirarab S., Warnow T.. 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics. 31:i44–i52. PubMed PMC
Moen D.S. 2006. Cope’s rule in cryptodiran turtles: Do the body sizes of extant species reflect a trend of phyletic size increase? J. Evol. Biol. 19:1210–1221. PubMed
Monroe M.J., Bokma F.. 2010. Little evidence for Cope’s rule from Bayesian phylogenetic analysis of extant mammals. J. Evol. Biol. 23:2017–2021. PubMed
Moya-Laraño J., Halaj J., Wise D.H.. 2002. Climbing to reach females: Romeo should be small. Evolution. 56:420–425. PubMed
Moya-Laraño J., Vinković D., Allard C.M., Foellmer M.W.. 2009. Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders. J. Evol. Biol. 22:954–963. PubMed
Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q.. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268–274. PubMed PMC
Penney D. 2014. Predatory behaviour of Cretaceous social orb-weaving spiders: comment. Hist. Biol. 26:132–134.
Peters H. 1937. Studien am Netz der Kreuzspinne (Aranea diadema). 1. Die Grundstruktur des Netzes und Beziehungen zum Bauplan des Spinnenkorpers. Morphol. Ökol. Tiere 33:128–150.
Poinar G. 2018. Burmese amber: evidence of Gondwanan origin and Cretaceous dispersion. Hist. Biol. 2963:1–6.
Poinar G., Buckley R.. 2012. Predatory behaviour of the social orb-weaver spider, Geratonephila burmanica n. gen., n. sp. (Araneae: Nephilidae) with its wasp prey, Cascoscelio incassus n. gen., n. sp. (Hymenoptera: Platygastridae) in early Cretaceous Burmese amber. Hist. Biol. 24:519–525.
Poinar G.O., Danforth B.N.. 2006. A fossil bee from early cretaceous Burmese amber. Science. 314:614–614. PubMed
Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Lemmon E.M., Lemmon A.R.. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 526:569–573. PubMed
Ramos M., Coddington J.A., Christenson T.E., Irschick D.J.. 2005. Have male and female genitalia coevolved? A phylogenetic analysis of genitalic morphology and sexual size dimorphism in web-building spiders (Araneae: Araneoidea). Evolution. 59:1989–1999. PubMed
Rensch B. 1948. Histological changes correlated with evolutionary changes of body size. Evolution. 2:218–230. PubMed
Revell L.J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3:217–223.
Rokyta D.R., Lemmon A.R., Margres M.J., Aronow K.. 2012. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics. 13:312. PubMed PMC
Scharff N., Coddington J.A.. 1997. A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zool. J. Linn. Soc. 120:355–434.
Schneider J.M., Elgar M.A.. 2001. Sexual cannibalism and sperm competition in the golden orb-web spider Nephila plumipes (Araneoidea): female and male perspectives. Behav. Ecol. 12:547–552.
Shi G., Grimaldi D.A., Harlow G.E., Wang J., Wang J., Yang M., Lei W., Li Q., Li X.. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37:155–163.
Solow A.R., Wang S.C.. 2008. Some problems with assessing Cope’s rule. Evolution. 62:2092–2096. PubMed
Stanley S. 1973. An explanation for Cope’s rule. Evolution. 27:1–26. PubMed
Starrett J., Derkarabetian S., Hedin M., Bryson R.W., McCormack J.E., Faircloth B.C.. 2017. High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Mol. Ecol. Resour. 17:812–823. PubMed
Su, Y.C., Chang, Y.H., Smith, D., Zhu, M.S., Kuntner, M., Tso, I.M.. 2011. Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia. Zool. Sci. 28:47–55. PubMed
Tamura K., Battistuzzi F.U., Billing-Ross P., Murillo O., Filipski A., Kumar S.. 2012. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. USA. 109:19333–19338. PubMed PMC
Tamura K., Tao Q., Kumar S.. 2018. Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35:1770–1782. PubMed PMC
Vidergar N., Toplak N., Kuntner M.. 2014. Streamlining DNA barcoding protocols: automated DNA extraction and a new cox1 primer in arachnid systematics. PLoS One. 9:e113030. PubMed PMC
Vollrath F., Parker G.A.. 1992. Sexual dimorphism and distorted sex ratios in spiders. Nature. 360:156–159.
Waller J.T., Svensson E.I.. 2017. Body size evolution in an old insect order: No evidence for Cope’s rule in spite of fitness benefits of large size. Evolution. 71:2178–2193. PubMed
Webb T.J., Freckleton R.P.. 2007. Only half right: species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS One. 2:e897. PubMed PMC
Wheeler W.C., Coddington J.A., Crowley L.M., Dimitrov D., Goloboff P.A., Griswold C.E., Hormiga G., Prendini L., Ramírez M.J., Sierwald P., Almeida-Silva L., Alvarez-Padilla F., Arnedo M.A., Benavides Silva L.R., Benjamin S.P., Bond J.E., Grismado C.J., Hasan E., Hedin M., Izquierdo M.A., Labarque F.M., Ledford J., Lopardo L., Maddison W.P., Miller J.A., Piacentini L.N., Platnick N.I., Polotow D., Silva-Dávila D., Scharff N., Szûts T., Ubick D., Vink C.J., Wood H.M., Zhang J.. 2017. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 33:574–616. PubMed
Wood H.M., González V.L., Lloyd M., Coddington J.A., Scharff N.. 2018. Next-generation museum genomics: Phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea). Mol. Phylogenet. Evol. 127:907–918. PubMed
WSC. 2018. World spider catalog version 19.5. Available from: URL http://wsc.nmbe.ch.
Wunderlich J. 1986. Spinnenfauna Gestern und Heute. Wiesbaden: Bauer Verlag.
Wunderlich J. 2004a. Fossil spiders in amber and copal. Conclusions, revisions, new taxa and family diagnoses of fossil and extant taxa. Hirschberg-Leutershausen: Verlag Joerg Wunderlich; 1908pp.
Wunderlich J. 2004b. The fossil spiders (Araneae) of the families Tetragnathidae and Zygiellidae n. stat. in Baltic and Dominican amber, with notes on higher extant and fossil taxa. Beitr. Araneol. 3:899–955.
Dynamic evolution of size and colour in the highly specialized Zodarion ant-eating spiders