Interplay of Chimeric Mating-Type Loci Impairs Fertility Rescue and Accounts for Intra-Strain Variability in Zygosaccharomyces rouxii Interspecies Hybrid ATCC42981
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30881382
PubMed Central
PMC6405483
DOI
10.3389/fgene.2019.00137
Knihovny.cz E-resources
- Keywords
- MinION, Zygosaccharomyces, chimeric loci, interspecies hybridization, mating-type, sexual cycle, yeast,
- Publication type
- Journal Article MeSH
The pre-whole genome duplication (WGD) Zygosaccharomyces clade comprises several allodiploid strain/species with industrially interesting traits. The salt-tolerant yeast ATCC42981 is a sterile and allodiploid strain which contains two subgenomes, one of them resembling the haploid parental species Z. rouxii. Recently, different mating-type-like (MTL) loci repertoires were reported for ATCC42981 and the Japanese strain JCM22060, which are considered two stocks of the same strain. MTL reconstruction by direct sequencing approach is challenging due to gene redundancy, structure complexities, and allodiploid nature of ATCC42981. Here, DBG2OLC and MaSuRCA hybrid de novo assemblies of ONT and Illumina reads were combined with in vitro long PCR to definitively solve these incongruences. ATCC42981 exhibits several chimeric MTL loci resulting from reciprocal translocation between parental haplotypes and retains two MATa/MATα expression loci, in contrast to MATα in JCM22060. Consistently to these reconstructions, JCM22060, but not ATCC42981, undergoes mating and meiosis. To ascertain whether the damage of one allele at the MAT locus regains the complete sexual cycle in ATCC42981, we removed the MATα expressed locus by gene deletion. The resulting MATa/- hemizygous mutants did not show any evidence of sporulation, as well as of self- and out-crossing fertility, probably because incomplete silencing at the chimeric HMLα cassette masks the loss of heterozygosity at the MAT locus. We also found that MATα deletion switched off a2 transcription, an activator of a-specific genes in pre-WGD species. These findings suggest that regulatory scheme of cell identity needs to be further investigated in Z. rouxii protoploid yeast.
Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
Department of Membrane Transport Institute of Physiology Czech Academy of Sciences Prague Czechia
See more in PubMed
Albertin W., Marullo P. (2012). Polyploidy in fungi: evolution after whole-genome duplication. Proc. R. Soc. B. Biol. Sci. 279 2497–2509. 10.1098/rspb.2012.0434 PubMed DOI PMC
Baker C. R., Booth L. N., Sorrells T. R., Johnson A. D. (2012). Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 151 80–95. 10.1016/j.cell.2012.08.018 PubMed DOI PMC
Baker C. R., Tuch B. B., Johnson A. D. (2011). Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proc. Natl. Acad. Sci. U.S.A. 108 7493–7498. 10.1073/pnas.1019177108 PubMed DOI PMC
Bizzarri M., Cassanelli S., Pryszcz L. P., Gawor J., Gromadka R., Solieri L. (2018). Draft genome sequences of the highly halotolerant strain Zygosaccharomyces rouxii ATCC 42981 and the novel allodiploid strain Zygosaccharomyces sapae ATB301T obtained using the MinION platform. Microbiol. Res. Announc. 7:e874-18. 10.1128/MRA.00874-18 PubMed DOI PMC
Bizzarri M., Cassanelli S., Solieri L. (2017). Mating-type switching in CBS 732T derived subcultures unveils potential genetic and phenotypic novelties in haploid Zygosaccharomyces rouxii. FEMS Microbiol. Lett. 365 1–8. 10.1093/femsle/fnx263 PubMed DOI
Bizzarri M., Giudici P., Cassanelli S., Solieri L. (2016). Chimeric sex-determining chromosomal regions and dysregulation of cell-type identity in a sterile Zygosaccharomyces allodiploid yeast. PLoS One 11:e0152558. 10.1371/journal.pone.0152558 PubMed DOI PMC
Boisnard S., Li Y. Z., Arnaise S., Sequeira G., Raffoux X., Enache-Angoulvant A., et al. (2015). Efficient mating-type switching in Candida glabrata induces cell death. PLoS One 10:e0140990. 10.1371/journal.pone.0140990 PubMed DOI PMC
Bond U., Neal C., Donnelly D., James T. C. (2004). Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr. Genet. 45 360–370. 10.1007/s00294-004-0504-x PubMed DOI
Booth L. N., Tuch B. B., Johnson A. D. (2010). Intercalation of a new tier of transcription regulation into an ancient circuit. Nature 468 959–963. 10.1038/nature09560 PubMed DOI PMC
Boynton P. J., Janzen T., Greig D. (2018). Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility. Yeast 35 85–98. 10.1002/yea.3282 PubMed DOI
Braun-Galleani S., Ortiz-Merino R. A., Wu Q., Xu Y., Wolfe K. H. (2018). Zygosaccharomyces pseudobailii, another yeast interspecies hybrid that regained fertility by damaging one of its MAT loci. FEMS Yeast Res. 18:foy079. 10.1093/femsyr/foy079 PubMed DOI PMC
Campbell M. A., Ganley A. R., Gabaldon T., Cox M. P. (2016). The case of the missing ancient fungal polyploids. Am. Nat. 188 602–614. 10.1086/688763 PubMed DOI
Chien C. T., Buck S., Sternglanz R., Shore D. (1993). Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75 531–534. 10.1016/0092-8674(93)90387-6 PubMed DOI
Del Angel D. V., Hjerde E., Sterck L., Capella-Gutierrez S., Notredame C., Pettersson O. V., et al. (2018). Ten steps to get started in genome assembly and annotation. F1000Research 7:ELIXIR-148. 10.12688/f1000research.13598.1 PubMed DOI PMC
Dujon B. A., Louis E. J. (2017). Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics 206 717–750. 10.1534/genetics.116.199216 PubMed DOI PMC
Ellahi A., Rine J. (2016). Evolution and functional trajectory of Sir1 in gene silencing. Mol. Cell Biol. 36 1164–1179. 10.1128/MCB.01013-15 PubMed DOI PMC
Fabre E., Muller H., Therizols P., Lafontaine I., Dujon B., Fairhead C. (2005). Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol. Biol. Evol. 22 856–873. 10.1093/molbev/msi070 PubMed DOI
Gabaldón T., Martin T., Marcet-Houben M., Durrens P., Bolotin-Fukuhara M., Lespinet O., et al. (2013). Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 14:623. 10.1186/1471-2164-14-623 PubMed DOI PMC
Gallagher J. E. G., Babiarz J. E., Teytelman L., Wolfe K. H., Rine J. (2009). Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Genetics 181 1477–1491. 10.1534/genetics.108.099663 PubMed DOI PMC
Gordon J. L., Armisén D., Proux-Wéra E., ÓhÉigeartaigh S. S., Byrne K. P., Wolfe K. H. (2011). Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proc. Natl. Acad. Sci. U.S.A. 108 20024–20029. 10.1073/pnas.1112808108 PubMed DOI PMC
Gordon J. L., Wolfe K. H. (2008). Recent allopolyploid origin of Zygosaccharomyces rouxii strain ATCC 42981. Yeast 25 449–456. 10.1002/yea.1598 PubMed DOI
Greig D., Borts R. H., Louis E. J., Travisano M. (2002). Epistasis and hybrid sterility in Saccharomyces. Proc. Biol. Sci. 269 1167–1171. 10.1098/rspb.2002.1989 PubMed DOI PMC
Güldener U., Heck S., Fiedler T., Beinhauer J., Hegemann J. H. (1996). A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24 2519–2524. 10.1093/nar/24.13.2519 PubMed DOI PMC
Haber J. E. (2012). Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191 33–64. 10.1534/genetics.111.134577 PubMed DOI PMC
Hewitt S. K., Donaldson I. J., Lovell S. C., Delneri D. (2014). Sequencing and characterisation of rearrangements in three S. pastorianus strains reveals the presence of chimeric genes and gives evidence of breakpoint reuse. PLoS One 9:e92203. 10.1371/journal.pone.0092203 PubMed DOI PMC
Hickman M. A., Froyd C. A., Rusche L. N. (2011). Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Eukaryot. Cell 10 1183–1192. 10.1128/EC.05123-11 PubMed DOI PMC
Hoffman C. S., Winston F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 51 267–272. 10.1016/0378-1119(87)90131-4 PubMed DOI
Istace B., Friedrich A., d’Agata L., Faye S., Payen E., Beluche O., et al. (2017). De novo assembly and population genomic survey of natural yeast isolates with the oxford nanopore MinION sequencer. Gigascience 6 1–13. 10.1093/gigascience/giw018 PubMed DOI PMC
Jain M., Koren S., Miga K. H., Quick J., Rand A. C., Sasani T. A. (2018). Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36 338–345. 10.1038/nbt.4060 PubMed DOI PMC
Jain M., Olsen H. E., Paten B., Akeson M. (2016). The oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17:239. 10.1186/s13059-016-1103-0 PubMed DOI PMC
James S. A., Stratford M. (2011). “Zygosaccharomyces Barker (1901),” in The Yeasts, a Taxonomic Study eds Kurtzman C. P., Fell J. W., Boekhout T. (London: Elsevier; ) 937–947.
Jansen H. J., Liem M., Jong-Raadsen S. A., Dufour S., Weltzien F. A., Swinkels W., et al. (2017). Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci. Rep. 7:7213. 10.1038/s41598-017-07650-6 PubMed DOI PMC
Karanyicz E., Antunovics Z., Kallai Z., Sipiczki M. (2017). Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids. Appl. Microbiol. Biotechnol. 2017 4617–4633. 10.1007/s00253-017-8274-9 PubMed DOI
Lee H., Chou J., Cheong L., Chang N. H., Yang S. Y., Leu J. Y. (2008). Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135 1065–1073. 10.1016/j.cell.2008.10.047 PubMed DOI
Liti G., Barton D. B. H., Louis E. J. (2006). Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174 839–850. 10.1534/genetics.106.062166 PubMed DOI PMC
Lõoke M., Kristjuhan K., Kristjuhan A. (2011). Extraction of genomic dna from yeasts for pcr-based applications. BioTechniques 50 325–328. 10.2144/000113672 PubMed DOI PMC
Marcet-Houben M., Gabaldón T. (2015). Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the baker’s yeast lineage. PLoS Biol. 13:e1002220. 10.1371/journal.pbio.1002220 PubMed DOI PMC
Monerawela C., Bond U. (2017). Recombination sites on hybrid chromosomes in Saccharomyces pastorianus share common sequence motifs and define a complex evolutionary relationship between group I and II lager yeasts. FEMS Yeast Res. 17:fox047. 10.1093/femsyr/fox047 PubMed DOI
Mori H., Onishi H. (1967). Diploid hybridization in a heterothallic haploid yeast, Saccharomyces rouxii. Appl. Microbiol. 15 928–934. PubMed PMC
Muller H., Hennequin C., Gallaud J., Dujon B., Fairhead C. (2008). The asexual yeast Candida glabrata maintains distinct a and α haploid mating-types. Eukaryot. Cell 7 848–858. 10.1128/EC.00456-07 PubMed DOI PMC
Ner S. S., Smith M. (1989). Role of intron splicing in the function of the MATa1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 9 4613–4620. 10.1128/mcb.9.11.4613 PubMed DOI PMC
Ohno S. (1970). Evolution by Gene Duplication. New York, NY: Springer-Verlag; 10.1007/978-3-642-86659-3 DOI
Ortiz-Merino R. A., Kuanyshev N., Braun-Galleani S., Byrne K. P., Porro D., Branduardi P. (2017). Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch. PLoS Biol. 15:e2002128. 10.1371/journal.pbio.2002128 PubMed DOI PMC
Pfliegler P. W., Antunovics Z., Sipiczki M. (2012). Double sterility barrier between Saccharomyces species and its breakdown in allopolyploid hybrids by chromosome loss. FEMS Yeast Res. 12 703–718. 10.1111/j.1567-1364.2012.00820.x PubMed DOI
Pribylova L., Sychrova H. (2003). Efficient transformation of the osmotolerant yeast Zygosaccharomyces rouxii by electroporation. J. Microbiol. Methods 55 481–484. 10.1016/S0167-7012(03)00197-0 PubMed DOI
Priyam A., Woodcroft B. J., Rai V., Munagala A., Moghul I., Ter F., et al. (2015). Sequenceserver: a modern graphical user interface for custom BLAST databases. bioRxiv [Preprint]. 10.1101/033142 PubMed DOI PMC
Proux-Wéra E., Armisén D., Byrne K. P., Wolfe K. H. (2012). A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC Bioinformatics 13:237. 10.1186/1471-2105-13-237 PubMed DOI PMC
Pryszcz L., Gabaldón T. (2016). Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44:e113. 10.1093/nar/gkw294 PubMed DOI PMC
Rajeh A., Lv J., Lin Z. (2018). Heterogeneous rates of genome rearrangement contributed to the disparity of species richness in Ascomycota. BMC Genomics 19:282. 10.1186/s12864-018-4683-0 PubMed DOI PMC
Roberts C., Van der Walt J. P. (1959). The life cycle of Kluyveromyces polysporus. C. R. Trav. Lab. Carlsberg Chim. 31 129–148. PubMed
Sambrook J., Maniatis T., Fritsch E. (1989). Molecular Cloning: A Laboratory Manual. New York, NY: Cold Spring Harbor Laboratory.
Sato A., Matsushima K., Oshima K., Hattori M., Koyama Y. (2017). Draft genome sequencing of the highly halotolerant and allopolyploid yeast Zygosaccharomyces rouxii NBRC 1876. Genome Announc. 5:e1610-16. 10.1128/genomeA.01610-16 PubMed DOI PMC
Sievers F., Higgins D. G. (2014). “Clustal omega, accurate alignment of very large numbers of sequences,” in Multiple Sequence Alignment Methods ed. Russell D. J. (Totowa, NJ: Humana Press; ). 10.1007/978-1-62703-646-7_6 PubMed DOI
Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., Zdobnov E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 3210–3212. 10.1093/bioinformatics/btv35 PubMed DOI
Sipiczki M. (2008). Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res. 8 996–1007. 10.1111/j.1567-1364.2008.00369.x PubMed DOI
Slater G. S. C., Birney E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31. 10.1186/1471-2105-6-31 PubMed DOI PMC
Solieri L., Cassanelli S., Croce M. A., Giudici P. (2008). Genome size and ploidy level: new insights for elucidating relationships in Zygosaccharomyces species. Fungal Genet. Biol. 45 1582–1590. 10.1016/j.fgb.2008.10.001 PubMed DOI
Solieri L., Dakal T. C., Giudici P., Cassanelli S. (2014). Sex-determination system in the diploid yeast Zygosaccharomyces sapae. G3 4 1011–1025. 10.1534/g3.114.010405 PubMed DOI PMC
Solieri L., Vezzani V., Cassanelli S., Dakal T. C., Pazzini J., Giudici P. (2016). Differential hypersaline stress response in Zygosaccharomyces rouxii complex yeasts: a physiological and transcriptional study. FEMS Yeast Res. 16:fow063. 10.1093/femsyr/fow063 PubMed DOI
Souciet J. L., Dujon B., Gaillardin C. (2009). Comparative genomics of protoploid Saccharomycetaceae. Genome Res. 19 1696–1709. 10.1101/gr.091546.109 PubMed DOI PMC
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC
Treangen T. J., Salzberg S. L. (2012). Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13:36. 10.1038/nrg3117 PubMed DOI PMC
Tsong A. E., Miller M. G., Raisner R. M., Johnson A. D. (2003). Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115 389–399. 10.1016/S0092-8674(03)00885-7 PubMed DOI
Tsong A. E., Tuch B. B., Li H., Johnson A. D. (2006). Evolution of alternative transcriptional circuits with identical logic. Nature 443 415–420. 10.1038/nature05099 PubMed DOI
Vaser R., Sovic′ I., Nagarajan N., Šikic′ M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27 737–746. 10.1101/gr.214270.116 PubMed DOI PMC
Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC
Wang Z., Ye S., Li J., Zheng B., Bao M., Ning G. (2011). Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol. 11:109. 10.1186/1472-6750-11-109 PubMed DOI PMC
Watanabe J., Uehara K., Mogi Y. (2013). Diversity of mating-type chromosome structures in the yeast Zygosaccharomyces rouxii caused by ectopic exchanges between MAT-Like loci. PLoS One 8:e62121. 10.1371/journal.pone.0062121 PubMed DOI PMC
Watanabe J., Uehara K., Mogi Y., Tsukioka Y. (2017). Mechanism for restoration of fertility in hybrid Zygosaccharomyces rouxii generated by interspecies hybridization. Appl. Environ. Microbiol. 83:AEM.1187-17. 10.1128/AEM.01187-17 PubMed DOI PMC
Waterhouse A. M., Procter J. B., Martin D. M., Clamp M., Barton G. J. (2009). Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 1189–1191. 10.1093/bioinformatics/btp033 PubMed DOI PMC
Wolfe K. H. (2015). Origin of the yeast whole-genome duplication. PLoS Biol. 13:e1002221. 10.1371/journal.pbio.1002221 PubMed DOI PMC
Wolfe K. H., Armisen D., Proux-Wera E., OhEigeartaigh S. S., Azam H., Gordon J. L., et al. (2015). Clade- and species-specific features of genome evolution in the Saccharomycetaceae. FEMS Yeast Res. 15:fov035. 10.1093/femsyr/fov035 PubMed DOI PMC
Ye C., Hill C. M., Wu S., Ruan J., Ma Z. S. (2016). DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6:31900. 10.1038/srep31900 PubMed DOI PMC
Yue J. X., Li J., Aigrain L., Hallin J., Persson K., Oliver K., et al. (2017). Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat. Genet. 49 913–924. 10.1093/bioinformatics/bty614 PubMed DOI PMC
Zill O. A., Scannell D., Teytelman L., Rine J. (2010). Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly. PLoS Biol. 8:e1000550. 10.1371/journal.pbio.1000550 PubMed DOI PMC
Zill O. A., Scannell D. R., Kuei J., Sadhu M., Rine J. (2012). Evolutionary analysis of heterochromatin protein compatibility by interspecies complementation in Saccharomyces. Genetics 192 1001–1014. 10.1534/genetics.112.141549 PubMed DOI PMC
Zimin A. V., Puiu D., Luo M. C., Zhu T., Koren S., Marcais G., et al. (2017). Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27 787–792. 10.1101/gr.213405.116 PubMed DOI PMC