Affinity depletion versus relative protein enrichment: a side-by-side comparison of two major strategies for increasing human cerebrospinal fluid proteome coverage
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30890900
PubMed Central
PMC6390343
DOI
10.1186/s12014-019-9229-1
PII: 9229
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, CNS, Cerebrospinal fluid, Depletion, LC–MS/MS, Mass spectrometry,
- Publikační typ
- časopisecké články MeSH
Cerebrospinal fluid (CSF) is in direct contact with the central nervous system. This makes human CSF an attractive source of potential biomarkers for neurologic diseases. Similarly to blood plasma, proteomic analysis of CSF is complicated by a high dynamic range of individual protein concentrations and by the presence of several highly abundant proteins. To deal with the abundant human CSF proteins, methods developed for blood plasma/serum are routinely used. Multiple affinity removal systems and protein enrichment of less abundant proteins using a combinatorial peptide ligand library are among the most frequent approaches. However, their relative impact on CSF proteome coverage has never been evaluated side-by-side in a single study. Therefore, we explored the effect of CSF depletion using MARS 14 cartridge and ProteoMiner ligand library on the number of CSF proteins identified in subsequent LC-MS/MS analysis. LC-MS/MS analysis of crude (non-treated) CSF provided roughly 500 identified proteins. Depletion of CSF by MARS 14 cartridge increased the number of identifications to nearly 800, while treatment of CSF using ProteoMiner enabled identification of 600 proteins. To explore the potential losses of CSF proteins during the depletion process, we also analyzed the "waste" fractions generated by both methods, i.e., proteins retained by the MARS 14 cartridge, and the molecules present in the flow-through fraction from ProteoMiner. More than 250 proteins were bound to MARS 14 cartridge, 100 of those were not identified in the corresponding depleted CSF. Similarly, analysis of the waste fraction in ProteoMiner workflow provided almost 70 unique proteins not found in the CSF depleted by the ligand library. Both depletion strategies significantly increased the number of identified CSF proteins compared to crude CSF. However, MARS 14 depletion provided a markedly higher number of identified proteins (773) compared to ProteoMiner (611). Further, we showed that CSF proteins are lost due to co-depletion (MARS 14) or exclusion (ProteoMiner) during the depletion process. This suggests that the routinely discarded "waste" fractions contain proteins of potential interest and should be included in CSF biomarker studies.
BIOCEV 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Gozes I. Specific protein biomarker patterns for Alzheimer’s disease: improved diagnostics in progress. EMPA J. 2017;8(3):255–259. doi: 10.1007/s13167-017-0110-x. PubMed DOI PMC
McLean BN, Luxton RW, Thompson EJ. A study of immunoglobulin G in the cerebrospinal fluid of 1007 patients with suspected neurological diseases using isoelectric focusing and the log-IgG index. Brain. 1990;113:1269–1289. doi: 10.1093/brain/113.5.1269. PubMed DOI
Yuan X, Desiderio DM. Proteomics analysis of human cerebrospinal fluid. J Chromatogr B Anal Technol Biomed Life Sci. 2005;815(1–2):179–189. doi: 10.1016/j.jchromb.2004.06.044. PubMed DOI
Schutzer SE, et al. Establishing the proteome of normal human cerebrospinal fluid. PLoS ONE. 2010;5(6):1–7. doi: 10.1371/journal.pone.0010980. PubMed DOI PMC
Roche S, Gabelle A, Lehmann S. Clinical proteomics of the cerebrospinal fluid: towards the discovery of new biomarkers. Proteom Clin Appl. 2008;2(3):428–436. doi: 10.1002/prca.200780040. PubMed DOI
Fountoulakis M, et al. Depletion of the high-abundance plasma proteins. Amino Acids. 2004;27(3–4):249–259. doi: 10.1007/s00726-004-0141-1. PubMed DOI
Kroksveen AC, Opsahl JA, Aye TT, Ulvik RJ, Berven FS. Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteom. 2011;74(4):371–388. doi: 10.1016/j.jprot.2010.11.010. PubMed DOI
Wu C, Duan J, Liu T, Smith RD, Qian WJ. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B. 2016 doi: 10.1016/j.jchromb.2016.01.015. PubMed DOI PMC
Yadav AK, et al. A systematic analysis of eluted fraction of plasma post immunoaffinity depletion: implications in biomarker discovery. PLoS ONE. 2011;6(9):1–9. doi: 10.1371/journal.pone.0024442. PubMed DOI PMC
Tu Ch, et al. Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res. 2010;9(10):4982–4991. doi: 10.1021/pr100646w. PubMed DOI PMC
Maccarrone G, et al. Mining the human cerebrospinal fluid proteome by immunodepletion and shotgun mass spectrometry. Electrophoresis. 2004;25(14):2402–2412. doi: 10.1002/elps.200305909. PubMed DOI
Fratantoni SA, Piersma SR, Jimenez CR. Comparison of the performance of two affinity depletion spin filters for quantitative proteomics of CSF: evaluation of sensitivity and reproducibility of CSF analysis using GeLC-MS/MS and spectral counting. Proteom Clin Appl. 2010;4(6–7):613–617. doi: 10.1002/prca.200900179. PubMed DOI
Wetterhall M, Zuberovic A, Hanrieder J, Bergquist J. Assessment of the partitioning capacity of high abundant proteins in human cerebrospinal fluid using affinity and immunoaffinity subtraction spin columns. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(19):1519–1530. doi: 10.1016/j.jchromb.2010.04.003. PubMed DOI
Boschetti E, Righetti PG. The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteom. 2008;71(3):255–264. doi: 10.1016/j.jprot.2008.05.002. PubMed DOI
Li L. Dynamic range compression with ProteoMiner™: principles and examples. In: Posch A, editor. Proteomic profilling: methods and protocols. New York: Springer; 2015. pp. 99–101.
Mouton-Barbosa E, et al. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteom. 2010;9(5):1006–1021. doi: 10.1074/mcp.M900513-MCP200. PubMed DOI PMC
Sjödin MOD, Bergquist J, Wetterhall M. Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(22):2003–2012. doi: 10.1016/j.jchromb.2010.05.036. PubMed DOI
Manza LL, et al. Sample preparation and digestion for proteomic analyses using spin filters. Proteomics. 2005;5(7):1742–1745. doi: 10.1002/pmic.200401063. PubMed DOI
Hulsen T, de Vlieg J, Alkema W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genome. 2008;9:1–6. doi: 10.1186/1471-2164-9-488. PubMed DOI PMC
NunezGalindo A, Kussmann M, Dayon L. Proteomics of cerebrospinal fluid: throughput and robustness using a scalable automated analysis pipeline for biomarker discovery. Anal Chem. 2015;87(21):10755–10761. doi: 10.1021/acs.analchem.5b02748. PubMed DOI
Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteom. 2016;13(1):1–13. doi: 10.1186/s12014-016-9111-3. PubMed DOI PMC
Günther R, Krause E, Schümann M, Blasig IE, Haseloff RF. Depletion of highly abundant proteins from human cerebrospinal fluid: a cautionary note. Mol Neurodegener. 2015;10(1):53. doi: 10.1186/s13024-015-0050-7. PubMed DOI PMC
Aulchenko YS, et al. Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat Genet. 2008;40(12):1402–1403. doi: 10.1038/ng.251. PubMed DOI
Tischfield MA, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010;140(1):74–87. doi: 10.1016/j.cell.2009.12.011. PubMed DOI PMC
Ernst A, et al. Midregional proenkephalin A and N-terminal Protachykinin A are decreased in the cerebrospinal fluid of patients with dementia disorders and acute neuroinflammation. J Neuroimmunol. 2010;221(1–2):62–67. doi: 10.1016/j.jneuroim.2010.02.004. PubMed DOI
Doehner W, et al. Elevated plasma levels of neuropeptide proenkephalin a predict mortality and functional outcome in ischemic stroke. J Am Coll Cardiol. 2012;60(4):346–354. doi: 10.1016/j.jacc.2012.04.024. PubMed DOI
Chivet M, Hemming F, Pernet-Gallay K, Fraboulet S, Sadoul R. Emerging role of neuronal exosomes in the central nervous system. Front Physiol. 2012;3:145. doi: 10.3389/fphys.2012.00145. PubMed DOI PMC
Chiasserini D, et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteom. 2014;106:191–204. doi: 10.1016/j.jprot.2014.04.028. PubMed DOI
Hölttä M, et al. An integrated workflow for multiplex CSF proteomics and peptidomics—identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J Proteome Res. 2015;14:654–663. doi: 10.1021/pr501076j. PubMed DOI