Impact of jasmonic acid on lignification in the hemp hypocotyl
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30900496
PubMed Central
PMC6546144
DOI
10.1080/15592324.2019.1592641
Knihovny.cz E-zdroje
- Klíčová slova
- Hemp, jasmonic acid, lignin composition, salicylic acid,
- MeSH
- Cannabis účinky léků metabolismus MeSH
- cyklopentany farmakologie MeSH
- hypokotyl účinky léků růst a vývoj metabolismus MeSH
- kyselina salicylová farmakologie MeSH
- lignin metabolismus MeSH
- oxylipiny farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklopentany MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina salicylová MeSH
- lignin MeSH
- oxylipiny MeSH
Phytohormones are crucial molecules regulating plant development and responses to environmental challenges, including abiotic stresses, microbial and insect attacks. Most notably, phytohormones play important roles in the biosynthesis of lignocellulosics. Jasmonates are involved in secondary growth and secondary metabolism, such as phenylpropanoids and lignin biosyntheses. At the physiological and molecular levels, the actions of phytohormones depend on subtle concentration changes, as well as antagonistic equilibria between two or more of these molecules. In this article, we investigate the consequences of jasmonic acid (JA) spraying on young hemp hypocotyls. First, we show that JA application results in changes in the monomeric composition of lignin. Second, we highlight that, five days after application, JA leads to an increase in salicylic acid (SA) content in hemp hypocotyls. These results are discussed in the light of the known antagonism between JA and SA at both the physiological and molecular levels.
Zobrazit více v PubMed
Wasternack C, Song S.. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. J Exp Bot. 2017;68:1303–1321. PubMed
Zhou M, Memelink J.. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv. 2016;34:441–449. doi:10.1016/j.biotechadv.2016.02.004. PubMed DOI
Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens A. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci U S A. 2008;105:1380–1385. doi:10.1073/pnas.0711203105. PubMed DOI PMC
Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM. Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol. 2005;167:63–72. doi:10.1111/j.1469-8137.2005.01388.x. PubMed DOI
Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J. 2010;63:811–822. doi:10.1111/j.1365-313X.2010.04283.x. PubMed DOI PMC
Behr M, Lutts S, Hausman J-F, Guerriero G. Jasmonic acid to boost secondary growth in hemp hypocotyl. Planta. 2018;248:1029–1036. doi:10.1007/s00425-018-2951-5. PubMed DOI
Bonawitz ND, Chapple C. The Genetics of Lignin Biosynthesis: connecting Genotype to Phenotype. Annu Rev Genet. 2010;44:337–363. doi:10.1146/annurev-genet-102209-163508. PubMed DOI
Caarls L, Pieterse CMJ, Van Wees SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci. 2015;6:170. doi:10.3389/fpls.2015.00170. PubMed DOI PMC
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. Arab B. 2011;9:e0156. doi:10.1199/tab.0156. PubMed DOI PMC
Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta. 2010;232:1423–1432. doi:10.1007/s00425-010-1265-z. PubMed DOI PMC
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62:3321–3338. doi:10.1093/jxb/err025. PubMed DOI
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. J Exp Bot. 2017;68:1349–1359. doi:10.1093/jxb/erw495. PubMed DOI
Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerriero G. Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot. 2018. doi:10.1016/j.envexpbot.2018.10.017. DOI
Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell. 2013;25:744–761. doi:10.1105/tpc.113.114959. PubMed DOI PMC
Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt -M-M, et al. Transcriptional Profiling of Sorghum Induced by Methyl Jasmonate, Salicylic Acid, and Aminocyclopropane Carboxylic Acid Reveals Cooperative Regulation and Novel Gene Responses. Plant Physiol. 2005;138:352–368. doi:10.1104/pp.104.058206. PubMed DOI PMC
Behr M, Legay S, Žižková E, Motyka V, Dobrev PI, Hausman JF, Lutts S, Guerriero G. Studying Secondary Growth and Bast Fiber Development: the Hemp Hypocotyl Peeks behind the Wall. Front Plant Sci. 2016;7:1733. doi:10.3389/fpls.2016.01733. PubMed DOI PMC