Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RG/14/3/30706
British Heart Foundation - United Kingdom
RG/15/5/31446
British Heart Foundation - United Kingdom
Action EU-CardioRNA CA17129
European Cooperation in Science and Technology - International
PubMed
30934986
PubMed Central
PMC6630366
DOI
10.3390/ncrna5020031
PII: ncrna5020031
Knihovny.cz E-resources
- Keywords
- best practices and guidelines, cardiovascular disease, personalized medicine, transcriptomics, translational research,
- Publication type
- Journal Article MeSH
Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).
Babes Bolyai University 400084 Cluj Napoca Romania
Biogazelle 9052 Zwijnaarde Belgium
Biomedical Research Foundation Academy of Athens 11527 Athens Greece
Cardiovascular Research Unit Luxembourg Institute of Health L 1445 Strassen Luxembourg
Center for Molecular Medicine Karolinska Institute 17176 Stockholm Sweden
Department Cardiovascular Humanitas Research Hospital 20089 Rozzano Italy
Department of Cardiology Medical University of Vienna 1090 Vienna Austria
Department of Intelligent Systems Jozef Stefan Institute 1000e Ljubljana Slovenia
Department of Medical Biology Faculty of Medicine Cumhuriyet University 58140 Sivas Turkey
Department of Pharmacology and Pharmacotherapy Semmelweis University 1085 Budapest Hungary
Dokuz Eylul University Faculty of Medicine Department of Cardiology 35340 Izmir Turkey
Faculty of Health Sciences University of Malta MSD 2080 Msida Malta
Faculty of Technology and Metallurgy University of Belgrade 11000 Belgrade Serbia
INSERM Institut Pasteur de Lille 59019 Lille Cedex France
Institute for Drug Research Faculty of Medicine The Hebrew University 91120 Jerusalem Israel
Institute of Biomedical Research of Barcelona 08036 Barcelona Spain
Institute of Cellular Biology and Pathology Nicolae Simionescu 050568 Bucharest Romania
Instituto de Medicina Molecular Faculty Medicine University Lisboa 1649 028 Lisboa Portugal
Integrated BioBank of Luxembourg L 3550 Dudelange Luxembourg
International Clinical Research Center 656 91 Brno Czech Republic
Mental Health Center Sct Hans 4000 Roskilde Denmark
Minerva Institute for Medical Research 00290 Helsinki Finland
Molecular Cardiology Laboratory IRCCS Policlinico San Donato 20097 San Donato Milanese Milan Italy
National Heart and Lung Institute Faculty of Medicine Imperial College London London W12 0HH UK
Regenerative Medicine Institute REMEDI National University of Ireland Galway H91 TK33 Galway Ireland
Research Unit of Biomedicine University of Oulu 90014 Oulu Finland
The Cardinal Stefan Wyszynski Institute of Cardiology 04 628 Warsaw Poland
See more in PubMed
Mendis S., Puska P., Norrving B., World Health Organization. World Heart Federation. World Stroke Organization . Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization; Geneva, Switzerland: 2011. p. vi.155p
Wilkins E., Wilson L., Wickramasinghe K., Bhatnagar P., Leal J., Luengo-Fernandez R., Burns R., Rayner M., Townsend N. European Cardiovascular Disease Statistics 2017. European Heart Network; Brussels, Belgium: European Society of Cardiology; Sophia Antipolis, France: 2017.
Medicine I.O. Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health. The National Academies Press; Washington, DC, USA: 2010. p. 482. PubMed DOI
Booth F.W., Gordon S.E., Carlson C.J., Hamilton M.T. Waging war on modern chronic diseases: Primary prevention through exercise biology. J. Appl. Physiol. 2000;88:774–787. doi: 10.1152/jappl.2000.88.2.774. PubMed DOI
Kearney P.M., Whelton M., Reynolds K., Muntner P., Whelton P.K., He J. Global burden of hypertension: Analysis of worldwide data. Lancet. 2005;365:217–223. doi: 10.1016/S0140-6736(05)70151-3. PubMed DOI
Jacquier A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 2009;10:833–844. doi: 10.1038/nrg2683. PubMed DOI
Papageorgiou N., Tslamandris S., Giolis A., Tousoulis D. MicroRNAs in Cardiovascular Disease: Perspectives and Reality. Cardiol. Rev. 2016;24:110–118. doi: 10.1097/CRD.0000000000000078. PubMed DOI
Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC
Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., Mitchell P.S., Bennett C.F., Pogosova-Agadjanyan E.L., Stirewalt D.L., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011;108:5003–5008. doi: 10.1073/pnas.1019055108. PubMed DOI PMC
Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC
Cortez M.A., Bueso-Ramos C., Ferdin J., Lopez-Berestein G., Sood A.K., Calin G.A. MicroRNAs in body fluids—The mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011;8:467–477. doi: 10.1038/nrclinonc.2011.76. PubMed DOI PMC
Devaux Y. Transcriptome of blood cells as a reservoir of cardiovascular biomarkers. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:209–216. doi: 10.1016/j.bbamcr.2016.11.005. PubMed DOI
Goretti E., Wagner D.R., Devaux Y. miRNAs as biomarkers of myocardial infarction: A step forward towards personalized medicine? Trends Mol. Med. 2014;20:716–725. doi: 10.1016/j.molmed.2014.10.006. PubMed DOI
Antman E.M., Loscalzo J. Precision medicine in cardiology. Nat. Rev. Cardiol. 2016;13:591–602. doi: 10.1038/nrcardio.2016.101. PubMed DOI
Duffy D.J. Problems, challenges and promises: Perspectives on precision medicine. Brief. Bioinform. 2016;17:494–504. doi: 10.1093/bib/bbv060. PubMed DOI
Hall M.A., Moore J.H., Ritchie M.D. Embracing Complex Associations in Common Traits: Critical Considerations for Precision Medicine. Trends Genet. 2016;32:470–484. doi: 10.1016/j.tig.2016.06.001. PubMed DOI
Byron S.A., Van Keuren-Jensen K.R., Engelthaler D.M., Carpten J.D., Craig D.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016;17:257–271. doi: 10.1038/nrg.2016.10. PubMed DOI PMC
Devaux Y., Zangrando J., Schroen B., Creemers E.E., Pedrazzini T., Chang C.P., Dorn G.W., 2nd, Thum T., Heymans S., Cardiolinc N. Long noncoding RNAs in cardiac development and ageing. Nat. Rev. Cardiol. 2015;12:415–425. doi: 10.1038/nrcardio.2015.55. PubMed DOI
Sullenger B.A., Nair S. From the RNA world to the clinic. Science. 2016;352:1417–1420. doi: 10.1126/science.aad8709. PubMed DOI PMC
Pedrotty D.M., Morley M.P., Cappola T.P. Transcriptomic biomarkers of cardiovascular disease. Prog. Cardiovasc. Dis. 2012;55:64–69. doi: 10.1016/j.pcad.2012.06.003. PubMed DOI PMC
Consortium E.P. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. PubMed DOI PMC
Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008;9:102–114. doi: 10.1038/nrg2290. PubMed DOI
Friedman R.C., Farh K.K., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC
Lewis B.P., Burge C.B., Bartel D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI
Boon R.A., Jae N., Holdt L., Dimmeler S. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J. Am. Coll. Cardiol. 2016;67:1214–1226. doi: 10.1016/j.jacc.2015.12.051. PubMed DOI
Schnabel R.B., Baccarelli A., Lin H., Ellinor P.T., Benjamin E.J. Next steps in cardiovascular disease genomic research--sequencing, epigenetics, and transcriptomics. Clin. Chem. 2012;58:113–126. doi: 10.1373/clinchem.2011.170423. PubMed DOI PMC
Gurha P., Marian A.J. Noncoding RNAs in cardiovascular biology and disease. Circ. Res. 2013;113:e115–e120. doi: 10.1161/CIRCRESAHA.113.302988. PubMed DOI
Philippen L.E., Dirkx E., da Costa-Martins P.A., De Windt L.J. Non-coding RNA in control of gene regulatory programs in cardiac development and disease. J. Mol. Cell Cardiol. 2015;89:51–58. doi: 10.1016/j.yjmcc.2015.03.014. PubMed DOI
Ong S.B., Katwadi K., Kwek X.Y., Ismail N.I., Chinda K., Ong S.G., Hausenloy D.J. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin. Therap. Targets. 2018;22:247–261. doi: 10.1080/14728222.2018.1439015. PubMed DOI
Ozsolak F., Milos P.M. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 2011;12:87–98. doi: 10.1038/nrg2934. PubMed DOI PMC
Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 2012;13:358–369. doi: 10.1038/nrg3198. PubMed DOI PMC
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Wang K., Yuan Y., Cho J.H., McClarty S., Baxter D., Galas D.J. Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE. 2012;7:e41561. doi: 10.1371/journal.pone.0041561. PubMed DOI PMC
Joining European Scientific Forces to Face Pandemics